lib/optim/extragradient.py [185:196]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8,
                 weight_decay=0, amsgrad=False):
        if not 0.0 <= lr:
         raise ValueError("Invalid learning rate: {}".format(lr))
        if not 0.0 <= eps:
         raise ValueError("Invalid epsilon value: {}".format(eps))
        if not 0.0 <= betas[0] < 1.0:
         raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
        if not 0.0 <= betas[1] < 1.0:
         raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
        defaults = dict(lr=lr, betas=betas, eps=eps,
                     weight_decay=weight_decay, amsgrad=amsgrad)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



lib/optim/omd.py [48:59]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8,
                 weight_decay=0, amsgrad=False):
        if not 0.0 <= lr:
         raise ValueError("Invalid learning rate: {}".format(lr))
        if not 0.0 <= eps:
         raise ValueError("Invalid epsilon value: {}".format(eps))
        if not 0.0 <= betas[0] < 1.0:
         raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
        if not 0.0 <= betas[1] < 1.0:
         raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
        defaults = dict(lr=lr, betas=betas, eps=eps,
                     weight_decay=weight_decay, amsgrad=amsgrad)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



