def __init__()

in lib/models/mlp.py [0:0]


    def __init__(self, n_in, n_out, layers=[1024, 512, 256], activation='lrelu', batchnorm=False, dropout=0.):
        super(MLP_Discriminator, self).__init__()

        network = []
        n_previous = n_in
        for l in layers:
            network.append(nn.Linear(n_previous, l))
            if batchnorm:
                network.append(nn.BatchNorm1d(l))
            if activation == 'relu':
                network.append(nn.ReLU())
            elif activation == 'lrelu':
                network.append(nn.LeakyReLU(0.2))
            if dropout:
                network.append(nn.Dropout(dropout))
            n_previous = l
        network.append(nn.Linear(n_previous, n_out))

        self.network = nn.Sequential(*network)