def __init__()

in lib/models/wgangp.py [0:0]


    def __init__(self, num_filters, resample=None, batchnorm=True, inplace=False):
        super(ResBlock, self).__init__()

        if resample == 'up':
            conv_list = [nn.ConvTranspose2d(num_filters, num_filters, 4, stride=2, padding=1),
                        nn.Conv2d(num_filters, num_filters, 3, padding=1)]
            self.conv_shortcut =  nn.ConvTranspose2d(num_filters, num_filters, 1, stride=2, output_padding=1)

        elif resample == 'down':
            conv_list = [nn.Conv2d(num_filters, num_filters, 3, padding=1),
                        nn.Conv2d(num_filters, num_filters, 3, stride=2, padding=1)]
            self.conv_shortcut = nn.Conv2d(num_filters, num_filters, 1, stride=2)

        elif resample == None:
            conv_list = [nn.Conv2d(num_filters, num_filters, 3, padding=1),
                        nn.Conv2d(num_filters, num_filters, 3, padding=1)]
            self.conv_shortcut = None
        else:
            raise ValueError('Invalid resample value.')

        self.block = []
        for conv in conv_list:
            if batchnorm:
                self.block.append(nn.BatchNorm2d(num_filters))
            self.block.append(nn.ReLU(inplace))
            self.block.append(conv)

        self.block = nn.Sequential(*self.block)