def forward()

in src/transformer.py [0:0]


    def forward(self, input, mask, kv=None, cache=None, head_mask=None):
        """
        Self-attention (if kv is None) or attention over source sentence (provided by kv).
        """
        # Input is (bs, qlen, dim)
        # Mask is (bs, klen) (non-causal) or (bs, klen, klen)
        bs, qlen, dim = input.size()
        if kv is None:
            klen = qlen
        else:
            klen = kv.size(1)
        # assert dim == self.dim, 'Dimensions do not match: %s input vs %s configured' % (dim, self.dim)
        n_heads = self.n_heads
        dim_per_head = self.dim // n_heads
        #dim_per_head = self.dim
        mask_reshape = (bs, 1, qlen, klen) if mask.dim() == 3 else (bs, 1, 1, klen)

        def shape(x):
            """  projection """
            return x.view(bs, -1, self.n_heads, dim_per_head).transpose(1, 2)

        def unshape(x):
            """  compute context """
            return x.transpose(1, 2).contiguous().view(bs, -1, self.n_heads * dim_per_head)

        q = shape(self.q_lin(input))  # (bs, n_heads, qlen, dim_per_head)
        if kv is None: # self attention
            k = shape(self.k_lin(input))  # (bs, n_heads, qlen, dim_per_head)
            v = shape(self.v_lin(input))  # (bs, n_heads, qlen, dim_per_head)
        elif cache is None: # or self.layer_id not in cache:
            k = v = kv
            k = shape(self.k_lin(k))  # (bs, n_heads, qlen, dim_per_head)
            v = shape(self.v_lin(v))  # (bs, n_heads, qlen, dim_per_head)

        q = q / math.sqrt(dim_per_head)  # (bs, n_heads, qlen, dim_per_head)
        scores = torch.matmul(q, k.transpose(2, 3))  # (bs, n_heads, qlen, klen)
        mask = (mask == 0).view(mask_reshape).expand_as(scores)  # (bs, n_heads, qlen, klen)
        
        scores.masked_fill_(mask, -float("inf"))  # (bs, n_heads, qlen, klen)
        #print(scores.shape)
        weights = F.softmax(scores.float(), dim=-1).type_as(scores)  # (bs, n_heads, qlen, klen)
        weights = F.dropout(weights, p=self.dropout, training=self.training)  # (bs, n_heads, qlen, klen)

        context = torch.matmul(weights, v)  # (bs, n_heads, qlen, dim_per_head)
        context = unshape(context)  # (bs, qlen, dim)

        outputs = (self.out_lin(context),)
        return outputs