in experiments/codes/experiment/checkpointable_multitask_experiment.py [0:0]
def run_single_task(self, world_mode="train"):
"""
Only run one task - Supervised setup
:return:
"""
if self.epoch is None:
self.epoch = 0
train_world_names = list(self.dataloaders[world_mode].keys())
wn = [w.split("/")[-1] for w in train_world_names]
wn_i = wn.index(self.config.general.train_rule)
train_rule_world = train_world_names[wn_i]
task_idx = train_world_names.index(train_rule_world)
if self.config.model.should_train:
for epoch in range(self.epoch, self.config.model.num_epochs):
self.logbook.write_message_logs(f"Training rule {train_rule_world}")
# ipdb.set_trace()
self.logbook.write_message_logs(
f"Choosing to train the model " f"on {train_rule_world}"
)
train_data = self.dataloaders[world_mode][train_rule_world]
self.train(train_data, train_rule_world, epoch, task_idx=task_idx)
self.epoch = epoch
self.periodic_save(epoch=epoch)
metrics = self.eval(
{train_rule_world: train_data},
epoch=epoch,
mode="valid",
data_mode=world_mode,
task_idx=task_idx,
)
for sched in self.schedulers:
sched.step(metrics["loss"])
self.eval(
{train_rule_world: self.dataloaders[world_mode][train_rule_world]},
epoch=epoch,
mode="test",
data_mode=world_mode,
task_idx=task_idx,
)
if self.config.logger.watch_model:
norms = [w.norm().item() for w in self.model.weights]
norm_metric = {
wn: norms[wi] for wi, wn in enumerate(self.model.weight_names)
}
norm_metric["mode"] = "train"
norm_metric["minibatch"] = self.train_step
self.logbook.write_metric_logs(norm_metric)
self.periodic_save(epoch)