def get_batch()

in models.py [0:0]


    def get_batch(self, batch):
        # sent in batch in decreasing order of lengths
        # batch: (bsize, max_len, word_dim)
        embed = np.zeros((len(batch[0]), len(batch), self.word_emb_dim))

        for i in range(len(batch)):
            for j in range(len(batch[i])):
                embed[j, i, :] = self.word_vec[batch[i][j]]

        return torch.FloatTensor(embed)