in common/utils/preprocessing.py [0:0]
def augmentation(img, bbox, joint_coord, joint_valid, hand_type, mode, joint_type):
img = img.copy();
joint_coord = joint_coord.copy();
hand_type = hand_type.copy();
original_img_shape = img.shape
joint_num = len(joint_coord)
if mode == 'train':
trans, scale, rot, do_flip, color_scale = get_aug_config()
else:
trans, scale, rot, do_flip, color_scale = [0,0], 1.0, 0.0, False, np.array([1,1,1])
bbox[0] = bbox[0] + bbox[2] * trans[0]
bbox[1] = bbox[1] + bbox[3] * trans[1]
img, trans, inv_trans = generate_patch_image(img, bbox, do_flip, scale, rot, cfg.input_img_shape)
img = np.clip(img * color_scale[None,None,:], 0, 255)
if do_flip:
joint_coord[:,0] = original_img_shape[1] - joint_coord[:,0] - 1
joint_coord[joint_type['right']], joint_coord[joint_type['left']] = joint_coord[joint_type['left']].copy(), joint_coord[joint_type['right']].copy()
joint_valid[joint_type['right']], joint_valid[joint_type['left']] = joint_valid[joint_type['left']].copy(), joint_valid[joint_type['right']].copy()
hand_type[0], hand_type[1] = hand_type[1].copy(), hand_type[0].copy()
for i in range(joint_num):
joint_coord[i,:2] = trans_point2d(joint_coord[i,:2], trans)
joint_valid[i] = joint_valid[i] * (joint_coord[i,0] >= 0) * (joint_coord[i,0] < cfg.input_img_shape[1]) * (joint_coord[i,1] >= 0) * (joint_coord[i,1] < cfg.input_img_shape[0])
return img, joint_coord, joint_valid, hand_type, inv_trans