in common/nets/layer.py [0:0]
def make_upsample_layers(feat_dims, bnrelu_final=True):
layers = []
for i in range(len(feat_dims)-1):
layers.append(
Interpolate(2, 'bilinear'))
layers.append(
nn.Conv2d(
in_channels=feat_dims[i],
out_channels=feat_dims[i+1],
kernel_size=3,
stride=1,
padding=1
))
# Do not use BN and ReLU for final estimation
if i < len(feat_dims)-2 or (i == len(feat_dims)-2 and bnrelu_final):
layers.append(nn.BatchNorm2d(feat_dims[i+1]))
layers.append(nn.ReLU(inplace=True))
return nn.Sequential(*layers)