in common/nets/layer.py [0:0]
def make_conv3d_layers(feat_dims, kernel=3, stride=1, padding=1, bnrelu_final=True):
layers = []
for i in range(len(feat_dims)-1):
layers.append(
nn.Conv3d(
in_channels=feat_dims[i],
out_channels=feat_dims[i+1],
kernel_size=kernel,
stride=stride,
padding=padding
))
# Do not use BN and ReLU for final estimation
if i < len(feat_dims)-2 or (i == len(feat_dims)-2 and bnrelu_final):
layers.append(nn.BatchNorm3d(feat_dims[i+1]))
layers.append(nn.ReLU(inplace=True))
return nn.Sequential(*layers)