in common/nets/layer.py [0:0]
def make_linear_layers(feat_dims, relu_final=True):
layers = []
for i in range(len(feat_dims)-1):
layers.append(nn.Linear(feat_dims[i], feat_dims[i+1]))
# Do not use ReLU for final estimation
if i < len(feat_dims)-2 or (i == len(feat_dims)-2 and relu_final):
layers.append(nn.ReLU(inplace=True))
return nn.Sequential(*layers)