in kats/utils/parameter_tuning_utils.py [0:0]
def get_default_prophet_parameter_search_space() -> List[Dict[str, Any]]:
"""Generates default search space as a list of dictionaries and returns it for prophet model.
Each dictionary in the list corresponds to a hyperparameter, having properties
defining that hyperparameter. Properties are name, type, value_type, values,
is_ordered. Hyperparameters that are included: seasonality_prior_scale, yearly_seasonality,
weekly_seasonality, daily_seasonality, seasonality_mode, changepoint_prior_scale,
changepoint_range.
Args:
N/A
Returns:
As described above
Raises:
N/A
"""
return [
{
"name": "seasonality_prior_scale",
"type": "choice",
"value_type": "float",
"values": list(np.logspace(-2, 1, 10, endpoint=True)),
"is_ordered": True,
},
{
"name": "yearly_seasonality",
"type": "choice",
"value_type": "bool",
"values": [True, False],
},
{
"name": "weekly_seasonality",
"type": "choice",
"value_type": "bool",
"values": [True, False],
},
{
"name": "daily_seasonality",
"type": "choice",
"value_type": "bool",
"values": [True, False],
},
{
"name": "seasonality_mode",
"type": "choice",
"value_type": "str",
"values": ["additive", "multiplicative"],
},
{
"name": "changepoint_prior_scale",
"type": "choice",
"value_type": "float",
"values": list(np.logspace(-3, 0, 10, endpoint=True)),
"is_ordered": True,
},
{
"name": "changepoint_range",
"type": "choice",
"value_type": "float",
"values": list(np.arange(0.8, 0.96, 0.01)), # last value is 0.95
"is_ordered": True,
},
]