in docker/app.py [0:0]
def vectorize():
content = request.args.get('q')
lang = request.args.get('lang')
embedding = ''
if lang is None or not lang:
lang = "en"
# encoder
model_dir = Path(__file__).parent / "LASER" / "models"
encoder_path = model_dir / "bilstm.93langs.2018-12-26.pt"
bpe_codes_path = model_dir / "93langs.fcodes"
print(f' - Encoder: loading {encoder_path}')
encoder = SentenceEncoder(encoder_path,
max_sentences=None,
max_tokens=12000,
sort_kind='mergesort',
cpu=True)
with tempfile.TemporaryDirectory() as tmp:
tmpdir = Path(tmp)
ifname = tmpdir / "content.txt"
bpe_fname = tmpdir / 'bpe'
bpe_oname = tmpdir / 'out.raw'
with ifname.open("w") as f:
f.write(content)
if lang != '--':
tok_fname = tmpdir / "tok"
Token(str(ifname),
str(tok_fname),
lang=lang,
romanize=True if lang == 'el' else False,
lower_case=True,
gzip=False,
verbose=True,
over_write=False)
ifname = tok_fname
BPEfastApply(str(ifname),
str(bpe_fname),
str(bpe_codes_path),
verbose=True, over_write=False)
ifname = bpe_fname
EncodeFile(encoder,
str(ifname),
str(bpe_oname),
verbose=True,
over_write=False,
buffer_size=10000)
dim = 1024
X = np.fromfile(str(bpe_oname), dtype=np.float32, count=-1)
X.resize(X.shape[0] // dim, dim)
embedding = X
body = {'content': content, 'embedding': embedding.tolist()}
return jsonify(body)