def TestCorpus()

in source/sent_classif.py [0:0]


    def TestCorpus(self, dset, name=' Dev', nlbl=4):
        correct = 0
        total = 0
        self.mlp.train(mode=False)
        corr = np.zeros(nlbl, dtype=np.int32)
        for data in dset:
            X, Y = data
            Y = Y.long()
            if self.gpu >= 0:
                X = X.cuda()
                Y = Y.cuda()
            outputs = self.mlp(X)
            _, predicted = torch.max(outputs.data, 1)
            total += Y.size(0)
            correct += (predicted == Y).int().sum()
            for i in range(nlbl):
                corr[i] += (predicted == i).int().sum()

        print(' | {:4s}: {:5.2f}%'
                         .format(name, 100.0 * correct.float() / total), end='')
        print(' | classes:', end='')
        for i in range(nlbl):
            print(' {:5.2f}'.format(100.0 * corr[i] / total), end='')

        return correct, total