LaNAS/Distributed_LaNAS/clientX/utils.py [53:99]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    def __init__(self, length):
        self.length = length

    def __call__(self, img):
        h, w = img.size(1), img.size(2)
        mask = np.ones((h, w), np.float32)
        y = np.random.randint(h)
        x = np.random.randint(w)

        y1 = np.clip(y - self.length // 2, 0, h)
        y2 = np.clip(y + self.length // 2, 0, h)
        x1 = np.clip(x - self.length // 2, 0, w)
        x2 = np.clip(x + self.length // 2, 0, w)

        mask[y1: y2, x1: x2] = 0.
        mask = torch.from_numpy(mask)
        mask = mask.expand_as(img)
        img *= mask
        return img


def _data_transforms_cifar10(cutout, cutout_length):
    """

    :param args:
    :return:
    """
    CIFAR_MEAN = [0.49139968, 0.48215827, 0.44653124]
    CIFAR_STD = [0.24703233, 0.24348505, 0.26158768]

    train_transform = transforms.Compose([
        transforms.RandomCrop(32, padding=4),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        transforms.Normalize(CIFAR_MEAN, CIFAR_STD),
    ])
    if cutout:
        train_transform.transforms.append(Cutout(cutout_length))

    valid_transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize(CIFAR_MEAN, CIFAR_STD),
    ])
    return train_transform, valid_transform


def count_parameters_in_MB(model):
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



LaNAS/one-shot_LaNAS/supernet/utils.py [46:87]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    def __init__(self, length):
        self.length = length

    def __call__(self, img):
        h, w = img.size(1), img.size(2)
        mask = np.ones((h, w), np.float32)
        y = np.random.randint(h)
        x = np.random.randint(w)

        y1 = np.clip(y - self.length // 2, 0, h)
        y2 = np.clip(y + self.length // 2, 0, h)
        x1 = np.clip(x - self.length // 2, 0, w)
        x2 = np.clip(x + self.length // 2, 0, w)

        mask[y1: y2, x1: x2] = 0.
        mask = torch.from_numpy(mask)
        mask = mask.expand_as(img)
        img *= mask
        return img


def _data_transforms_cifar10(cutout, cutout_length):
  CIFAR_MEAN = [0.49139968, 0.48215827, 0.44653124]
  CIFAR_STD = [0.24703233, 0.24348505, 0.26158768]

  train_transform = transforms.Compose([
    transforms.RandomCrop(32, padding=4),
    transforms.RandomHorizontalFlip(),
    transforms.ToTensor(),
    transforms.Normalize(CIFAR_MEAN, CIFAR_STD),
  ])
  if cutout:
    train_transform.transforms.append(Cutout(cutout_length))

  valid_transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize(CIFAR_MEAN, CIFAR_STD),
    ])
  return train_transform, valid_transform


def count_parameters_in_MB(model):
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



