def zero_supernet_generator()

in LaNAS/one-shot_LaNAS/supernet/supernet_train.py [0:0]


    def zero_supernet_generator(self):
        vec_length = len(self.layer_type)
        masked_vec = np.zeros((1, vec_length))[0].tolist()
        disconnected_vec = np.zeros((1, vec_length))[0].tolist()
        supernet = [[] for v in range(self.arch_node)]
        for i in range(self.arch_node):
            for j in range(self.arch_node + 2):
                if j < i + 2:
                    supernet[i].append(masked_vec.copy())
                else:
                    supernet[i].append(disconnected_vec.copy())
        for i in range(len(supernet)):
            for j in range(len(supernet[i])):
                for n in range(len(supernet[i][j])):
                    supernet[i][j][n] = int(supernet[i][j][n])
        return supernet