def __init__()

in levit.py [0:0]


    def __init__(self, dim, key_dim, num_heads=8,
                 attn_ratio=4,
                 activation=None,
                 resolution=14):
        super().__init__()
        self.num_heads = num_heads
        self.scale = key_dim ** -0.5
        self.key_dim = key_dim
        self.nh_kd = nh_kd = key_dim * num_heads
        self.d = int(attn_ratio * key_dim)
        self.dh = int(attn_ratio * key_dim) * num_heads
        self.attn_ratio = attn_ratio
        h = self.dh + nh_kd * 2
        self.qkv = Linear_BN(dim, h, resolution=resolution)
        self.proj = torch.nn.Sequential(activation(), Linear_BN(
            self.dh, dim, bn_weight_init=0, resolution=resolution))

        points = list(itertools.product(range(resolution), range(resolution)))
        N = len(points)
        attention_offsets = {}
        idxs = []
        for p1 in points:
            for p2 in points:
                offset = (abs(p1[0] - p2[0]), abs(p1[1] - p2[1]))
                if offset not in attention_offsets:
                    attention_offsets[offset] = len(attention_offsets)
                idxs.append(attention_offsets[offset])
        self.attention_biases = torch.nn.Parameter(
            torch.zeros(num_heads, len(attention_offsets)))
        self.register_buffer('attention_bias_idxs',
                             torch.LongTensor(idxs).view(N, N))

        global FLOPS_COUNTER
        #queries * keys
        FLOPS_COUNTER += num_heads * (resolution**4) * key_dim
        # softmax
        FLOPS_COUNTER += num_heads * (resolution**4)
        #attention * v
        FLOPS_COUNTER += num_heads * self.d * (resolution**4)