in datasets.py [0:0]
def build_dataset(is_train, args):
transform = build_transform(is_train, args)
if args.data_set == 'CIFAR':
dataset = datasets.CIFAR100(
args.data_path, train=is_train, transform=transform)
nb_classes = 100
elif args.data_set == 'IMNET':
root = os.path.join(args.data_path, 'train' if is_train else 'val')
dataset = datasets.ImageFolder(root, transform=transform)
nb_classes = 1000
elif args.data_set == 'FLOWERS':
root = os.path.join(args.data_path, 'train' if is_train else 'test')
dataset = datasets.ImageFolder(root, transform=transform)
if is_train:
dataset = torch.utils.data.ConcatDataset(
[dataset for _ in range(100)])
nb_classes = 102
elif args.data_set == 'INAT':
dataset = INatDataset(args.data_path, train=is_train, year=2018,
category=args.inat_category, transform=transform)
nb_classes = dataset.nb_classes
elif args.data_set == 'INAT19':
dataset = INatDataset(args.data_path, train=is_train, year=2019,
category=args.inat_category, transform=transform)
nb_classes = dataset.nb_classes
return dataset, nb_classes