def build_dataset()

in datasets.py [0:0]


def build_dataset(is_train, args):
    transform = build_transform(is_train, args)

    if args.data_set == 'CIFAR':
        dataset = datasets.CIFAR100(
            args.data_path, train=is_train, transform=transform)
        nb_classes = 100
    elif args.data_set == 'IMNET':
        root = os.path.join(args.data_path, 'train' if is_train else 'val')
        dataset = datasets.ImageFolder(root, transform=transform)
        nb_classes = 1000
    elif args.data_set == 'FLOWERS':
        root = os.path.join(args.data_path, 'train' if is_train else 'test')
        dataset = datasets.ImageFolder(root, transform=transform)
        if is_train:
            dataset = torch.utils.data.ConcatDataset(
                [dataset for _ in range(100)])
        nb_classes = 102
    elif args.data_set == 'INAT':
        dataset = INatDataset(args.data_path, train=is_train, year=2018,
                              category=args.inat_category, transform=transform)
        nb_classes = dataset.nb_classes
    elif args.data_set == 'INAT19':
        dataset = INatDataset(args.data_path, train=is_train, year=2019,
                              category=args.inat_category, transform=transform)
        nb_classes = dataset.nb_classes

    return dataset, nb_classes