in ml3/mbrl_utils.py [0:0]
def __init__(self,env):
super(Dynamics, self).__init__()
self.env=env
self.dt = env.dt
self.model_cfg = {}
self.model_cfg['device'] = 'cpu'
self.model_cfg['hidden_size'] = [100, 30]
self.model_cfg['batch_size'] = 128
self.model_cfg['epochs'] = 500
self.model_cfg['display_epoch'] = 50
self.model_cfg['learning_rate'] = 0.001
self.model_cfg['ensemble_size'] = 3
self.model_cfg['state_dim'] = env.state_dim
self.model_cfg['action_dim'] = env.action_dim
self.model_cfg['output_dim'] = env.pos_dim
self.ensemble = EnsembleProbabilisticModel(self.model_cfg)
self.data_X = []
self.data_Y = []
self.norm_in = torch.Tensor(np.expand_dims(np.array([1.0,1.0,8.0,8.0,1.0,1.0]),axis=0))