mask2former/modeling/criterion.py [161:263]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        with torch.no_grad():
            # sample point_coords
            point_coords = get_uncertain_point_coords_with_randomness(
                src_masks,
                lambda logits: calculate_uncertainty(logits),
                self.num_points,
                self.oversample_ratio,
                self.importance_sample_ratio,
            )
            # get gt labels
            point_labels = point_sample(
                target_masks,
                point_coords,
                align_corners=False,
            ).squeeze(1)

        point_logits = point_sample(
            src_masks,
            point_coords,
            align_corners=False,
        ).squeeze(1)

        losses = {
            "loss_mask": sigmoid_ce_loss_jit(point_logits, point_labels, num_masks),
            "loss_dice": dice_loss_jit(point_logits, point_labels, num_masks),
        }

        del src_masks
        del target_masks
        return losses

    def _get_src_permutation_idx(self, indices):
        # permute predictions following indices
        batch_idx = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)])
        src_idx = torch.cat([src for (src, _) in indices])
        return batch_idx, src_idx

    def _get_tgt_permutation_idx(self, indices):
        # permute targets following indices
        batch_idx = torch.cat([torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)])
        tgt_idx = torch.cat([tgt for (_, tgt) in indices])
        return batch_idx, tgt_idx

    def get_loss(self, loss, outputs, targets, indices, num_masks):
        loss_map = {
            'labels': self.loss_labels,
            'masks': self.loss_masks,
        }
        assert loss in loss_map, f"do you really want to compute {loss} loss?"
        return loss_map[loss](outputs, targets, indices, num_masks)

    def forward(self, outputs, targets):
        """This performs the loss computation.
        Parameters:
             outputs: dict of tensors, see the output specification of the model for the format
             targets: list of dicts, such that len(targets) == batch_size.
                      The expected keys in each dict depends on the losses applied, see each loss' doc
        """
        outputs_without_aux = {k: v for k, v in outputs.items() if k != "aux_outputs"}

        # Retrieve the matching between the outputs of the last layer and the targets
        indices = self.matcher(outputs_without_aux, targets)

        # Compute the average number of target boxes accross all nodes, for normalization purposes
        num_masks = sum(len(t["labels"]) for t in targets)
        num_masks = torch.as_tensor(
            [num_masks], dtype=torch.float, device=next(iter(outputs.values())).device
        )
        if is_dist_avail_and_initialized():
            torch.distributed.all_reduce(num_masks)
        num_masks = torch.clamp(num_masks / get_world_size(), min=1).item()

        # Compute all the requested losses
        losses = {}
        for loss in self.losses:
            losses.update(self.get_loss(loss, outputs, targets, indices, num_masks))

        # In case of auxiliary losses, we repeat this process with the output of each intermediate layer.
        if "aux_outputs" in outputs:
            for i, aux_outputs in enumerate(outputs["aux_outputs"]):
                indices = self.matcher(aux_outputs, targets)
                for loss in self.losses:
                    l_dict = self.get_loss(loss, aux_outputs, targets, indices, num_masks)
                    l_dict = {k + f"_{i}": v for k, v in l_dict.items()}
                    losses.update(l_dict)

        return losses

    def __repr__(self):
        head = "Criterion " + self.__class__.__name__
        body = [
            "matcher: {}".format(self.matcher.__repr__(_repr_indent=8)),
            "losses: {}".format(self.losses),
            "weight_dict: {}".format(self.weight_dict),
            "num_classes: {}".format(self.num_classes),
            "eos_coef: {}".format(self.eos_coef),
            "num_points: {}".format(self.num_points),
            "oversample_ratio: {}".format(self.oversample_ratio),
            "importance_sample_ratio: {}".format(self.importance_sample_ratio),
        ]
        _repr_indent = 4
        lines = [head] + [" " * _repr_indent + line for line in body]
        return "\n".join(lines)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



mask2former_video/modeling/criterion.py [157:259]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        with torch.no_grad():
            # sample point_coords
            point_coords = get_uncertain_point_coords_with_randomness(
                src_masks,
                lambda logits: calculate_uncertainty(logits),
                self.num_points,
                self.oversample_ratio,
                self.importance_sample_ratio,
            )
            # get gt labels
            point_labels = point_sample(
                target_masks,
                point_coords,
                align_corners=False,
            ).squeeze(1)

        point_logits = point_sample(
            src_masks,
            point_coords,
            align_corners=False,
        ).squeeze(1)

        losses = {
            "loss_mask": sigmoid_ce_loss_jit(point_logits, point_labels, num_masks),
            "loss_dice": dice_loss_jit(point_logits, point_labels, num_masks),
        }

        del src_masks
        del target_masks
        return losses

    def _get_src_permutation_idx(self, indices):
        # permute predictions following indices
        batch_idx = torch.cat([torch.full_like(src, i) for i, (src, _) in enumerate(indices)])
        src_idx = torch.cat([src for (src, _) in indices])
        return batch_idx, src_idx

    def _get_tgt_permutation_idx(self, indices):
        # permute targets following indices
        batch_idx = torch.cat([torch.full_like(tgt, i) for i, (_, tgt) in enumerate(indices)])
        tgt_idx = torch.cat([tgt for (_, tgt) in indices])
        return batch_idx, tgt_idx

    def get_loss(self, loss, outputs, targets, indices, num_masks):
        loss_map = {
            'labels': self.loss_labels,
            'masks': self.loss_masks,
        }
        assert loss in loss_map, f"do you really want to compute {loss} loss?"
        return loss_map[loss](outputs, targets, indices, num_masks)

    def forward(self, outputs, targets):
        """This performs the loss computation.
        Parameters:
             outputs: dict of tensors, see the output specification of the model for the format
             targets: list of dicts, such that len(targets) == batch_size.
                      The expected keys in each dict depends on the losses applied, see each loss' doc
        """
        outputs_without_aux = {k: v for k, v in outputs.items() if k != "aux_outputs"}

        # Retrieve the matching between the outputs of the last layer and the targets
        indices = self.matcher(outputs_without_aux, targets)

        # Compute the average number of target boxes accross all nodes, for normalization purposes
        num_masks = sum(len(t["labels"]) for t in targets)
        num_masks = torch.as_tensor(
            [num_masks], dtype=torch.float, device=next(iter(outputs.values())).device
        )
        if is_dist_avail_and_initialized():
            torch.distributed.all_reduce(num_masks)
        num_masks = torch.clamp(num_masks / get_world_size(), min=1).item()

        # Compute all the requested losses
        losses = {}
        for loss in self.losses:
            losses.update(self.get_loss(loss, outputs, targets, indices, num_masks))

        # In case of auxiliary losses, we repeat this process with the output of each intermediate layer.
        if "aux_outputs" in outputs:
            for i, aux_outputs in enumerate(outputs["aux_outputs"]):
                indices = self.matcher(aux_outputs, targets)
                for loss in self.losses:
                    l_dict = self.get_loss(loss, aux_outputs, targets, indices, num_masks)
                    l_dict = {k + f"_{i}": v for k, v in l_dict.items()}
                    losses.update(l_dict)

        return losses

    def __repr__(self):
        head = "Criterion " + self.__class__.__name__
        body = [
            "matcher: {}".format(self.matcher.__repr__(_repr_indent=8)),
            "losses: {}".format(self.losses),
            "weight_dict: {}".format(self.weight_dict),
            "num_classes: {}".format(self.num_classes),
            "eos_coef: {}".format(self.eos_coef),
            "num_points: {}".format(self.num_points),
            "oversample_ratio: {}".format(self.oversample_ratio),
            "importance_sample_ratio: {}".format(self.importance_sample_ratio),
        ]
        _repr_indent = 4
        lines = [head] + [" " * _repr_indent + line for line in body]
        return "\n".join(lines)
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



