in mask2former/data/dataset_mappers/mask_former_semantic_dataset_mapper.py [0:0]
def __call__(self, dataset_dict):
"""
Args:
dataset_dict (dict): Metadata of one image, in Detectron2 Dataset format.
Returns:
dict: a format that builtin models in detectron2 accept
"""
assert self.is_train, "MaskFormerSemanticDatasetMapper should only be used for training!"
dataset_dict = copy.deepcopy(dataset_dict) # it will be modified by code below
image = utils.read_image(dataset_dict["file_name"], format=self.img_format)
utils.check_image_size(dataset_dict, image)
if "sem_seg_file_name" in dataset_dict:
# PyTorch transformation not implemented for uint16, so converting it to double first
sem_seg_gt = utils.read_image(dataset_dict.pop("sem_seg_file_name")).astype("double")
else:
sem_seg_gt = None
if sem_seg_gt is None:
raise ValueError(
"Cannot find 'sem_seg_file_name' for semantic segmentation dataset {}.".format(
dataset_dict["file_name"]
)
)
aug_input = T.AugInput(image, sem_seg=sem_seg_gt)
aug_input, transforms = T.apply_transform_gens(self.tfm_gens, aug_input)
image = aug_input.image
sem_seg_gt = aug_input.sem_seg
# Pad image and segmentation label here!
image = torch.as_tensor(np.ascontiguousarray(image.transpose(2, 0, 1)))
if sem_seg_gt is not None:
sem_seg_gt = torch.as_tensor(sem_seg_gt.astype("long"))
if self.size_divisibility > 0:
image_size = (image.shape[-2], image.shape[-1])
padding_size = [
0,
self.size_divisibility - image_size[1],
0,
self.size_divisibility - image_size[0],
]
image = F.pad(image, padding_size, value=128).contiguous()
if sem_seg_gt is not None:
sem_seg_gt = F.pad(sem_seg_gt, padding_size, value=self.ignore_label).contiguous()
image_shape = (image.shape[-2], image.shape[-1]) # h, w
# Pytorch's dataloader is efficient on torch.Tensor due to shared-memory,
# but not efficient on large generic data structures due to the use of pickle & mp.Queue.
# Therefore it's important to use torch.Tensor.
dataset_dict["image"] = image
if sem_seg_gt is not None:
dataset_dict["sem_seg"] = sem_seg_gt.long()
if "annotations" in dataset_dict:
raise ValueError("Semantic segmentation dataset should not have 'annotations'.")
# Prepare per-category binary masks
if sem_seg_gt is not None:
sem_seg_gt = sem_seg_gt.numpy()
instances = Instances(image_shape)
classes = np.unique(sem_seg_gt)
# remove ignored region
classes = classes[classes != self.ignore_label]
instances.gt_classes = torch.tensor(classes, dtype=torch.int64)
masks = []
for class_id in classes:
masks.append(sem_seg_gt == class_id)
if len(masks) == 0:
# Some image does not have annotation (all ignored)
instances.gt_masks = torch.zeros((0, sem_seg_gt.shape[-2], sem_seg_gt.shape[-1]))
else:
masks = BitMasks(
torch.stack([torch.from_numpy(np.ascontiguousarray(x.copy())) for x in masks])
)
instances.gt_masks = masks.tensor
dataset_dict["instances"] = instances
return dataset_dict