def forward()

in mask2former/modeling/transformer_decoder/mask2former_transformer_decoder.py [0:0]


    def forward(self, x, mask_features, mask = None):
        # x is a list of multi-scale feature
        assert len(x) == self.num_feature_levels
        src = []
        pos = []
        size_list = []

        # disable mask, it does not affect performance
        del mask

        for i in range(self.num_feature_levels):
            size_list.append(x[i].shape[-2:])
            pos.append(self.pe_layer(x[i], None).flatten(2))
            src.append(self.input_proj[i](x[i]).flatten(2) + self.level_embed.weight[i][None, :, None])

            # flatten NxCxHxW to HWxNxC
            pos[-1] = pos[-1].permute(2, 0, 1)
            src[-1] = src[-1].permute(2, 0, 1)

        _, bs, _ = src[0].shape

        # QxNxC
        query_embed = self.query_embed.weight.unsqueeze(1).repeat(1, bs, 1)
        output = self.query_feat.weight.unsqueeze(1).repeat(1, bs, 1)

        predictions_class = []
        predictions_mask = []

        # prediction heads on learnable query features
        outputs_class, outputs_mask, attn_mask = self.forward_prediction_heads(output, mask_features, attn_mask_target_size=size_list[0])
        predictions_class.append(outputs_class)
        predictions_mask.append(outputs_mask)

        for i in range(self.num_layers):
            level_index = i % self.num_feature_levels
            attn_mask[torch.where(attn_mask.sum(-1) == attn_mask.shape[-1])] = False
            # attention: cross-attention first
            output = self.transformer_cross_attention_layers[i](
                output, src[level_index],
                memory_mask=attn_mask,
                memory_key_padding_mask=None,  # here we do not apply masking on padded region
                pos=pos[level_index], query_pos=query_embed
            )

            output = self.transformer_self_attention_layers[i](
                output, tgt_mask=None,
                tgt_key_padding_mask=None,
                query_pos=query_embed
            )
            
            # FFN
            output = self.transformer_ffn_layers[i](
                output
            )

            outputs_class, outputs_mask, attn_mask = self.forward_prediction_heads(output, mask_features, attn_mask_target_size=size_list[(i + 1) % self.num_feature_levels])
            predictions_class.append(outputs_class)
            predictions_mask.append(outputs_mask)

        assert len(predictions_class) == self.num_layers + 1

        out = {
            'pred_logits': predictions_class[-1],
            'pred_masks': predictions_mask[-1],
            'aux_outputs': self._set_aux_loss(
                predictions_class if self.mask_classification else None, predictions_mask
            )
        }
        return out