in mask2former/data/dataset_mappers/mask_former_instance_dataset_mapper.py [0:0]
def __call__(self, dataset_dict):
"""
Args:
dataset_dict (dict): Metadata of one image, in Detectron2 Dataset format.
Returns:
dict: a format that builtin models in detectron2 accept
"""
assert self.is_train, "MaskFormerPanopticDatasetMapper should only be used for training!"
dataset_dict = copy.deepcopy(dataset_dict) # it will be modified by code below
image = utils.read_image(dataset_dict["file_name"], format=self.img_format)
utils.check_image_size(dataset_dict, image)
aug_input = T.AugInput(image)
aug_input, transforms = T.apply_transform_gens(self.tfm_gens, aug_input)
image = aug_input.image
# transform instnace masks
assert "annotations" in dataset_dict
for anno in dataset_dict["annotations"]:
anno.pop("keypoints", None)
annos = [
utils.transform_instance_annotations(obj, transforms, image.shape[:2])
for obj in dataset_dict.pop("annotations")
if obj.get("iscrowd", 0) == 0
]
if len(annos):
assert "segmentation" in annos[0]
segms = [obj["segmentation"] for obj in annos]
masks = []
for segm in segms:
if isinstance(segm, list):
# polygon
masks.append(polygons_to_bitmask(segm, *image.shape[:2]))
elif isinstance(segm, dict):
# COCO RLE
masks.append(mask_util.decode(segm))
elif isinstance(segm, np.ndarray):
assert segm.ndim == 2, "Expect segmentation of 2 dimensions, got {}.".format(
segm.ndim
)
# mask array
masks.append(segm)
else:
raise ValueError(
"Cannot convert segmentation of type '{}' to BitMasks!"
"Supported types are: polygons as list[list[float] or ndarray],"
" COCO-style RLE as a dict, or a binary segmentation mask "
" in a 2D numpy array of shape HxW.".format(type(segm))
)
# Pad image and segmentation label here!
image = torch.as_tensor(np.ascontiguousarray(image.transpose(2, 0, 1)))
masks = [torch.from_numpy(np.ascontiguousarray(x)) for x in masks]
classes = [int(obj["category_id"]) for obj in annos]
classes = torch.tensor(classes, dtype=torch.int64)
if self.size_divisibility > 0:
image_size = (image.shape[-2], image.shape[-1])
padding_size = [
0,
self.size_divisibility - image_size[1],
0,
self.size_divisibility - image_size[0],
]
# pad image
image = F.pad(image, padding_size, value=128).contiguous()
# pad mask
masks = [F.pad(x, padding_size, value=0).contiguous() for x in masks]
image_shape = (image.shape[-2], image.shape[-1]) # h, w
# Pytorch's dataloader is efficient on torch.Tensor due to shared-memory,
# but not efficient on large generic data structures due to the use of pickle & mp.Queue.
# Therefore it's important to use torch.Tensor.
dataset_dict["image"] = image
# Prepare per-category binary masks
instances = Instances(image_shape)
instances.gt_classes = classes
if len(masks) == 0:
# Some image does not have annotation (all ignored)
instances.gt_masks = torch.zeros((0, image.shape[-2], image.shape[-1]))
else:
masks = BitMasks(torch.stack(masks))
instances.gt_masks = masks.tensor
dataset_dict["instances"] = instances
return dataset_dict