def build_evaluator()

in train_net.py [0:0]


    def build_evaluator(cls, cfg, dataset_name, output_folder=None):
        """
        Create evaluator(s) for a given dataset.
        This uses the special metadata "evaluator_type" associated with each
        builtin dataset. For your own dataset, you can simply create an
        evaluator manually in your script and do not have to worry about the
        hacky if-else logic here.
        """
        if output_folder is None:
            output_folder = os.path.join(cfg.OUTPUT_DIR, "inference")
        evaluator_list = []
        evaluator_type = MetadataCatalog.get(dataset_name).evaluator_type
        # semantic segmentation
        if evaluator_type in ["sem_seg", "ade20k_panoptic_seg"]:
            evaluator_list.append(
                SemSegEvaluator(
                    dataset_name,
                    distributed=True,
                    output_dir=output_folder,
                )
            )
        # instance segmentation
        if evaluator_type == "coco":
            evaluator_list.append(COCOEvaluator(dataset_name, output_dir=output_folder))
        # panoptic segmentation
        if evaluator_type in [
            "coco_panoptic_seg",
            "ade20k_panoptic_seg",
            "cityscapes_panoptic_seg",
            "mapillary_vistas_panoptic_seg",
        ]:
            if cfg.MODEL.MASK_FORMER.TEST.PANOPTIC_ON:
                evaluator_list.append(COCOPanopticEvaluator(dataset_name, output_folder))
        # COCO
        if evaluator_type == "coco_panoptic_seg" and cfg.MODEL.MASK_FORMER.TEST.INSTANCE_ON:
            evaluator_list.append(COCOEvaluator(dataset_name, output_dir=output_folder))
        if evaluator_type == "coco_panoptic_seg" and cfg.MODEL.MASK_FORMER.TEST.SEMANTIC_ON:
            evaluator_list.append(SemSegEvaluator(dataset_name, distributed=True, output_dir=output_folder))
        # Mapillary Vistas
        if evaluator_type == "mapillary_vistas_panoptic_seg" and cfg.MODEL.MASK_FORMER.TEST.INSTANCE_ON:
            evaluator_list.append(InstanceSegEvaluator(dataset_name, output_dir=output_folder))
        if evaluator_type == "mapillary_vistas_panoptic_seg" and cfg.MODEL.MASK_FORMER.TEST.SEMANTIC_ON:
            evaluator_list.append(SemSegEvaluator(dataset_name, distributed=True, output_dir=output_folder))
        # Cityscapes
        if evaluator_type == "cityscapes_instance":
            assert (
                torch.cuda.device_count() > comm.get_rank()
            ), "CityscapesEvaluator currently do not work with multiple machines."
            return CityscapesInstanceEvaluator(dataset_name)
        if evaluator_type == "cityscapes_sem_seg":
            assert (
                torch.cuda.device_count() > comm.get_rank()
            ), "CityscapesEvaluator currently do not work with multiple machines."
            return CityscapesSemSegEvaluator(dataset_name)
        if evaluator_type == "cityscapes_panoptic_seg":
            if cfg.MODEL.MASK_FORMER.TEST.SEMANTIC_ON:
                assert (
                    torch.cuda.device_count() > comm.get_rank()
                ), "CityscapesEvaluator currently do not work with multiple machines."
                evaluator_list.append(CityscapesSemSegEvaluator(dataset_name))
            if cfg.MODEL.MASK_FORMER.TEST.INSTANCE_ON:
                assert (
                    torch.cuda.device_count() > comm.get_rank()
                ), "CityscapesEvaluator currently do not work with multiple machines."
                evaluator_list.append(CityscapesInstanceEvaluator(dataset_name))
        # ADE20K
        if evaluator_type == "ade20k_panoptic_seg" and cfg.MODEL.MASK_FORMER.TEST.INSTANCE_ON:
            evaluator_list.append(InstanceSegEvaluator(dataset_name, output_dir=output_folder))
        # LVIS
        if evaluator_type == "lvis":
            return LVISEvaluator(dataset_name, output_dir=output_folder)
        if len(evaluator_list) == 0:
            raise NotImplementedError(
                "no Evaluator for the dataset {} with the type {}".format(
                    dataset_name, evaluator_type
                )
            )
        elif len(evaluator_list) == 1:
            return evaluator_list[0]
        return DatasetEvaluators(evaluator_list)