in mask_former/data/dataset_mappers/detr_panoptic_dataset_mapper.py [0:0]
def __call__(self, dataset_dict):
"""
Args:
dataset_dict (dict): Metadata of one image, in Detectron2 Dataset format.
Returns:
dict: a format that builtin models in detectron2 accept
"""
dataset_dict = copy.deepcopy(dataset_dict) # it will be modified by code below
image = utils.read_image(dataset_dict["file_name"], format=self.img_format)
utils.check_image_size(dataset_dict, image)
if self.crop_gen is None:
image, transforms = T.apply_transform_gens(self.tfm_gens, image)
else:
if np.random.rand() > 0.5:
image, transforms = T.apply_transform_gens(self.tfm_gens, image)
else:
image, transforms = T.apply_transform_gens(
self.tfm_gens[:-1] + self.crop_gen + self.tfm_gens[-1:], image
)
image_shape = image.shape[:2] # h, w
# Pytorch's dataloader is efficient on torch.Tensor due to shared-memory,
# but not efficient on large generic data structures due to the use of pickle & mp.Queue.
# Therefore it's important to use torch.Tensor.
dataset_dict["image"] = torch.as_tensor(np.ascontiguousarray(image.transpose(2, 0, 1)))
if not self.is_train:
# USER: Modify this if you want to keep them for some reason.
dataset_dict.pop("annotations", None)
return dataset_dict
if "pan_seg_file_name" in dataset_dict:
pan_seg_gt = utils.read_image(dataset_dict.pop("pan_seg_file_name"), "RGB")
segments_info = dataset_dict["segments_info"]
# apply the same transformation to panoptic segmentation
pan_seg_gt = transforms.apply_segmentation(pan_seg_gt)
from panopticapi.utils import rgb2id
pan_seg_gt = rgb2id(pan_seg_gt)
instances = Instances(image_shape)
classes = []
masks = []
for segment_info in segments_info:
class_id = segment_info["category_id"]
if not segment_info["iscrowd"]:
classes.append(class_id)
masks.append(pan_seg_gt == segment_info["id"])
classes = np.array(classes)
instances.gt_classes = torch.tensor(classes, dtype=torch.int64)
if len(masks) == 0:
# Some image does not have annotation (all ignored)
instances.gt_masks = torch.zeros((0, pan_seg_gt.shape[-2], pan_seg_gt.shape[-1]))
else:
masks = BitMasks(
torch.stack([torch.from_numpy(np.ascontiguousarray(x.copy())) for x in masks])
)
instances.gt_masks = masks.tensor
dataset_dict["instances"] = instances
return dataset_dict