in slowfast/utils/multigrid.py [0:0]
def get_long_cycle_schedule(self, cfg):
"""
Based on multigrid hyperparameters, define the schedule of a long cycle.
Args:
cfg (configs): configs that contains training and multigrid specific
hyperparameters. Details can be seen in
slowfast/config/defaults.py.
Returns:
schedule (list): Specifies a list long cycle base shapes and their
corresponding training epochs.
"""
steps = cfg.SOLVER.STEPS
default_size = float(
cfg.DATA.NUM_FRAMES * cfg.DATA.TRAIN_CROP_SIZE ** 2
)
default_iters = steps[-1]
# Get shapes and average batch size for each long cycle shape.
avg_bs = []
all_shapes = []
for t_factor, s_factor in cfg.MULTIGRID.LONG_CYCLE_FACTORS:
base_t = int(round(cfg.DATA.NUM_FRAMES * t_factor))
base_s = int(round(cfg.DATA.TRAIN_CROP_SIZE * s_factor))
if cfg.MULTIGRID.SHORT_CYCLE:
shapes = [
[
base_t,
cfg.MULTIGRID.DEFAULT_S
* cfg.MULTIGRID.SHORT_CYCLE_FACTORS[0],
],
[
base_t,
cfg.MULTIGRID.DEFAULT_S
* cfg.MULTIGRID.SHORT_CYCLE_FACTORS[1],
],
[base_t, base_s],
]
else:
shapes = [[base_t, base_s]]
# (T, S) -> (B, T, S)
shapes = [
[int(round(default_size / (s[0] * s[1] * s[1]))), s[0], s[1]]
for s in shapes
]
avg_bs.append(np.mean([s[0] for s in shapes]))
all_shapes.append(shapes)
# Get schedule regardless of cfg.MULTIGRID.EPOCH_FACTOR.
total_iters = 0
schedule = []
for step_index in range(len(steps) - 1):
step_epochs = steps[step_index + 1] - steps[step_index]
for long_cycle_index, shapes in enumerate(all_shapes):
cur_epochs = (
step_epochs * avg_bs[long_cycle_index] / sum(avg_bs)
)
cur_iters = cur_epochs / avg_bs[long_cycle_index]
total_iters += cur_iters
schedule.append((step_index, shapes[-1], cur_epochs))
iter_saving = default_iters / total_iters
final_step_epochs = cfg.SOLVER.MAX_EPOCH - steps[-1]
# We define the fine-tuning phase to have the same amount of iteration
# saving as the rest of the training.
ft_epochs = final_step_epochs / iter_saving * avg_bs[-1]
schedule.append((step_index + 1, all_shapes[-1][2], ft_epochs))
# Obtrain final schedule given desired cfg.MULTIGRID.EPOCH_FACTOR.
x = (
cfg.SOLVER.MAX_EPOCH
* cfg.MULTIGRID.EPOCH_FACTOR
/ sum(s[-1] for s in schedule)
)
final_schedule = []
total_epochs = 0
for s in schedule:
epochs = s[2] * x
total_epochs += epochs
final_schedule.append((s[0], s[1], int(round(total_epochs))))
print_schedule(final_schedule)
return final_schedule