in code/src/model/lm.py [0:0]
def generate(self, attr, max_len=200, temperature=-1):
"""
Generate sentences from attributes.
"""
assert temperature > 0 or temperature == -1
bs = attr.size(0)
cur_len = 1
decoded = torch.LongTensor(max_len, bs).fill_(self.pad_index).to(attr.device)
decoded[0] = self.bos_index
h_c = None
# decoding
while cur_len < max_len:
# previous word embeddings
if cur_len == 1 and self.bos_attr != '':
embeddings = self.get_bos_attr(attr)
else:
embeddings = self.embeddings(decoded[cur_len - 1])
embeddings = F.dropout(embeddings, p=self.dropout, training=self.training)
lstm_output, h_c = self.lstm(embeddings.unsqueeze(0), h_c)
output = F.dropout(lstm_output, p=self.dropout, training=self.training).view(bs, self.hidden_dim)
scores = self.proj(output)
if self.bias_attr != '':
scores = scores + self.get_bias_attr(attr)
assert scores.size() == (bs, self.n_words)
# select next words: sample or argmax
if temperature > 0:
next_words = torch.multinomial(F.softmax(scores / temperature, dim=1), 1).squeeze(1)
else:
next_words = scores.max(1)[1]
assert next_words.size() == (bs,)
decoded[cur_len] = next_words
cur_len += 1
# stop when there is a </s> in each sentence
if decoded.eq(self.eos_index).sum(0).ne(0).sum() == bs:
break
# compute the length of each generated sentence, and
# put some padding after the end of each sentence
lengths = torch.LongTensor(bs).fill_(cur_len)
for i in range(bs):
for j in range(cur_len):
if decoded[j, i] == self.eos_index:
if j + 1 < max_len:
decoded[j + 1:, i] = self.pad_index
lengths[i] = j + 1
break
if lengths[i] == max_len:
decoded[-1, i] = self.eos_index
return decoded[:cur_len], lengths