def __init__()

in fairnr/renderer.py [0:0]


    def __init__(self, 
                resolution="512x512", 
                frames=501, 
                speed=5,
                raymarching_steps=None,
                path_gen=None, 
                beam=10,
                at=(0,0,0),
                up=(0,1,0),
                output_dir=None,
                output_type=None,
                fps=24,
                test_camera_poses=None,
                test_camera_intrinsics=None,
                test_camera_views=None):

        self.frames = frames
        self.speed = speed
        self.raymarching_steps = raymarching_steps
        self.path_gen = path_gen
        
        if isinstance(resolution, str):
            self.resolution = [int(r) for r in resolution.split('x')]
        else:
            self.resolution = [resolution, resolution]

        self.beam = beam
        self.output_dir = output_dir
        self.output_type = output_type
        self.at = at
        self.up = up
        self.fps = fps

        if self.path_gen is None:
            self.path_gen = trajectory.circle()
        if self.output_type is None:
            self.output_type = ["rgb"]

        if test_camera_intrinsics is not None:
            self.test_int = data_utils.load_intrinsics(test_camera_intrinsics)
        else:
            self.test_int = None

        self.test_frameids = None
        if test_camera_poses is not None:
            if os.path.isdir(test_camera_poses):
                self.test_poses = [
                    np.loadtxt(f)[None, :, :] for f in sorted(glob.glob(test_camera_poses + "/*.txt"))]
                self.test_poses = np.concatenate(self.test_poses, 0)
            else:
                self.test_poses = data_utils.load_matrix(test_camera_poses)
                if self.test_poses.shape[1] == 17:
                    self.test_frameids = self.test_poses[:, -1].astype(np.int32)
                    self.test_poses = self.test_poses[:, :-1]
                self.test_poses = self.test_poses.reshape(-1, 4, 4)

            if test_camera_views is not None:
                render_views = parse_views(test_camera_views)
                self.test_poses = np.stack([self.test_poses[r] for r in render_views])

        else:
            self.test_poses = None