def __getitem__()

in neuralcompression/data/_vimeo_90k_septuplet.py [0:0]


    def __getitem__(self, idx: int) -> Tensor:
        if self.as_video:
            folder = self.root / self.folder_list[idx]
            images = []
            for im_num in range(1, self.frames_per_group + 1):
                images.append(self.load_image(folder, im_num))

            item: Tensor = torch.stack(images)

        else:
            folder_idx = idx // self.frames_per_group
            frame_idx = idx % self.frames_per_group + 1

            folder = self.root / self.folder_list[folder_idx]
            item = self.load_image(folder, frame_idx)

        if self.tensor_transform is not None:
            item = self.tensor_transform(item)

        return item