in neuralcompression/data/_vimeo_90k_septuplet.py [0:0]
def __getitem__(self, idx: int) -> Tensor:
if self.as_video:
folder = self.root / self.folder_list[idx]
images = []
for im_num in range(1, self.frames_per_group + 1):
images.append(self.load_image(folder, im_num))
item: Tensor = torch.stack(images)
else:
folder_idx = idx // self.frames_per_group
frame_idx = idx % self.frames_per_group + 1
folder = self.root / self.folder_list[folder_idx]
item = self.load_image(folder, frame_idx)
if self.tensor_transform is not None:
item = self.tensor_transform(item)
return item