utils/symbol/symbol_basic.py [42:60]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
def BN_ACT(data, act_type='relu', name=None):    
    bn = BatchNorm(data=data, name=('%s_bn' % name))
    act = Activation(data=bn, act_type=act_type, name=('%s_%s' % (name, act_type)))
    return act
    
def BN_ACT_Conv(data, num_filter, kernel, pad=(0, 0), stride=(1,1), name=None, no_bias=True, num_group=1, act_type='relu'):
    b_act = BN_ACT(data=data, name=name)
    conv = Convolution(data=b_act, num_filter=num_filter, kernel=kernel, stride=stride, pad=pad, num_group=num_group, no_bias=no_bias, name=('%s_conv' % name))
    return conv

def Conv_BN(data, num_filter, kernel, pad=(0, 0), stride=(1,1), name=None, no_bias=True, num_group=1, zero_init_gamma=False):
    conv = Convolution(data=data, num_filter=num_filter, kernel=kernel, stride=stride, pad=pad, num_group=num_group, no_bias=no_bias, name=('%s_conv' % name))
    bn = BatchNorm(data=conv, zero_init_gamma=zero_init_gamma, name=('%s_bn' % name))
    return bn

def Conv_BN_ACT(data, num_filter, kernel, pad=(0, 0), stride=(1,1), name=None, no_bias=True, num_group=1, act_type='relu'):
    conv = Convolution(data=data, num_filter=num_filter, kernel=kernel, stride=stride, pad=pad, num_group=num_group, no_bias=no_bias, name=('%s_conv' % name))
    b_act = BN_ACT(data=conv, act_type=act_type, name=name)
    return b_act
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



utils/symbol/symbol_octconv.py [125:143]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
def BN_ACT(data, act_type='relu', name=None):    
    bn = BatchNorm(data=data, name=('%s_bn' % name))
    act = Activation(data=bn, act_type=act_type, name=('%s_%s' % (name, act_type)))
    return act
    
def BN_ACT_Conv(data, num_filter, kernel, pad=(0, 0), stride=(1,1), name=None, no_bias=True, num_group=1, act_type='relu'):
    b_act = BN_ACT(data=data, name=name)
    conv = Convolution(data=b_act, num_filter=num_filter, kernel=kernel, stride=stride, pad=pad, num_group=num_group, no_bias=no_bias, name=('%s_conv' % name))
    return conv

def Conv_BN(data, num_filter, kernel, pad=(0, 0), stride=(1,1), name=None, no_bias=True, num_group=1, zero_init_gamma=False):
    conv = Convolution(data=data, num_filter=num_filter, kernel=kernel, stride=stride, pad=pad, num_group=num_group, no_bias=no_bias, name=('%s_conv' % name))
    bn = BatchNorm(data=conv, zero_init_gamma=zero_init_gamma, name=('%s_bn' % name))
    return bn

def Conv_BN_ACT(data, num_filter, kernel, pad=(0, 0), stride=(1,1), name=None, no_bias=True, num_group=1, act_type='relu'):
    conv = Convolution(data=data, num_filter=num_filter, kernel=kernel, stride=stride, pad=pad, num_group=num_group, no_bias=no_bias, name=('%s_conv' % name))
    b_act = BN_ACT(data=conv, act_type=act_type, name=name)
    return b_act
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



