in utils/gluon/score.py [0:0]
def parse_args():
parser = argparse.ArgumentParser(description='Train a model for image classification.')
parser.add_argument('--data-dir', type=str, default='~/.mxnet/datasets/imagenet',
help='training and validation pictures to use.')
parser.add_argument('--rec-train', type=str, default='~/.mxnet/datasets/imagenet/rec/train.rec',
help='the training data')
parser.add_argument('--rec-train-idx', type=str, default='~/.mxnet/datasets/imagenet/rec/train.idx',
help='the index of training data')
parser.add_argument('--rec-val', type=str, default='~/.mxnet/datasets/imagenet/rec/val.rec',
help='the validation data')
parser.add_argument('--rec-val-idx', type=str, default='~/.mxnet/datasets/imagenet/rec/val.idx',
help='the index of validation data')
parser.add_argument('--use-rec', action='store_true',
help='use image record iter for data input. default is false.')
parser.add_argument('--batch-size', type=int, default=32,
help='training batch size per device (CPU/GPU).')
parser.add_argument('--dtype', type=str, default='float32',
help='data type for training. default is float32')
parser.add_argument('--num-gpus', type=int, default=0,
help='number of gpus to use.')
parser.add_argument('-j', '--num-data-workers', dest='num_workers', default=4, type=int,
help='number of preprocessing workers')
parser.add_argument('--mode', type=str,
help='mode in which to train the model. options are symbolic, imperative, hybrid')
parser.add_argument('--model', type=str, default='resnet101_v1d_hi',
help='type of model to use. see vision_model for options.')
parser.add_argument('--ratio', type=float, default=0.,
help='percentage of the low frequency part')
parser.add_argument('--input-size', type=int, default=224,
help='size of the input image size. default is 224')
parser.add_argument('--crop-ratio', type=float, default=0.875,
help='Crop ratio during validation. default is 0.875')
parser.add_argument('--use-se', action='store_true',
help='use SE layers or not in resnext. default is false.')
parser.add_argument('--batch-norm', action='store_true',
help='enable batch normalization or not in vgg. default is false.')
parser.add_argument('--resume-params', type=str, default='',
help='path of parameters to load from.')
opt = parser.parse_args()
return opt