def __init__()

in utils/gluon/utils/densenet.py [0:0]


    def __init__(self, in_channels, out_channels, bn_size=4,
                 norm_kwargs=None, name_prefix=None):
        super(_DenseBlock, self).__init__(prefix=name_prefix)

        num_c1 = (bn_size * out_channels[0], bn_size * out_channels[1])
        num_c1 = tuple(int(c) if c > 0 else -1 for c in num_c1)

        with self.name_scope():
            # 1x1
            self.bn1 = nn.BatchNorm(in_channels=in_channels, prefix='bn1',
                            **({} if norm_kwargs is None else norm_kwargs))
            self.relu1 = nn.Activation('relu')
            self.conv1 = nn.Conv2D(channels=num_c1, in_channels=in_channels,
                            kernel_size=1, padding=0,
                            use_bias=False, prefix='conv1')
            # 3x3
            self.bn2 = nn.BatchNorm(in_channels=num_c1, prefix='bn2',
                            **({} if norm_kwargs is None else norm_kwargs))
            self.relu2 = nn.Activation('relu')
            self.conv2 = nn.Conv2D(channels=out_channels, in_channels=num_c1,
                            kernel_size=3, padding=1,
                            use_bias=False, prefix='conv2')