def parse_args()

in utils/gluon/train_imagenet.py [0:0]


def parse_args():
    parser = argparse.ArgumentParser(description='Train a model for image classification.')
    parser.add_argument('--data-dir', type=str, default='~/.mxnet/datasets/imagenet',
                        help='training and validation pictures to use.')
    parser.add_argument('--rec-train', type=str, default='~/.mxnet/datasets/imagenet/rec/train.rec',
                        help='the training data')
    parser.add_argument('--rec-train-idx', type=str, default='~/.mxnet/datasets/imagenet/rec/train.idx',
                        help='the index of training data')
    parser.add_argument('--rec-val', type=str, default='~/.mxnet/datasets/imagenet/rec/val.rec',
                        help='the validation data')
    parser.add_argument('--rec-val-idx', type=str, default='~/.mxnet/datasets/imagenet/rec/val.idx',
                        help='the index of validation data')
    parser.add_argument('--use-rec', action='store_true',
                        help='use image record iter for data input. default is false.')
    parser.add_argument('--batch-size', type=int, default=32,
                        help='training batch size per device (CPU/GPU).')
    parser.add_argument('--dtype', type=str, default='float32',
                        help='data type for training. default is float32')
    parser.add_argument('--num-gpus', type=int, default=0,
                        help='number of gpus to use.')
    parser.add_argument('-j', '--num-data-workers', dest='num_workers', default=4, type=int,
                        help='number of preprocessing workers')
    parser.add_argument('--num-epochs', type=int, default=3,
                        help='number of training epochs.')
    parser.add_argument('--lr', type=float, default=0.1,
                        help='learning rate. default is 0.1.')
    parser.add_argument('--momentum', type=float, default=0.9,
                        help='momentum value for optimizer, default is 0.9.')
    parser.add_argument('--wd', type=float, default=0.0001,
                        help='weight decay rate. default is 0.0001.')
    parser.add_argument('--lr-mode', type=str, default='step',
                        help='learning rate scheduler mode. options are step, poly and cosine.')
    parser.add_argument('--lr-decay', type=float, default=0.1,
                        help='decay rate of learning rate. default is 0.1.')
    parser.add_argument('--lr-decay-period', type=int, default=0,
                        help='interval for periodic learning rate decays. default is 0 to disable.')
    parser.add_argument('--lr-decay-epoch', type=str, default='40,60',
                        help='epochs at which learning rate decays. default is 40,60.')
    parser.add_argument('--warmup-lr', type=float, default=0.0,
                        help='starting warmup learning rate. default is 0.0.')
    parser.add_argument('--warmup-epochs', type=int, default=0,
                        help='number of warmup epochs.')
    parser.add_argument('--last-gamma', action='store_true',
                        help='whether to init gamma of the last BN layer in each bottleneck to 0.')
    parser.add_argument('--mode', type=str,
                        help='mode in which to train the model. options are symbolic, imperative, hybrid')
    parser.add_argument('--model', type=str, default='mobilenet_v1_075',
                        help='type of model to use. see vision_model for options.')
    parser.add_argument('--ratio', type=float, default=0.,
                        help='percentage of the low frequency part')
    parser.add_argument('--input-size', type=int, default=224,
                        help='size of the input image size. default is 224')
    parser.add_argument('--crop-ratio', type=float, default=0.875,
                        help='Crop ratio during validation. default is 0.875')
    parser.add_argument('--use-pretrained', action='store_true',
                        help='enable using pretrained model from gluon.')
    parser.add_argument('--use-se', action='store_true',
                        help='use SE layers or not in resnext. default is false.')
    parser.add_argument('--mixup', action='store_true',
                        help='whether train the model with mix-up. default is false.')
    parser.add_argument('--mixup-alpha', type=float, default=0.2,
                        help='beta distribution parameter for mixup sampling, default is 0.2.')
    parser.add_argument('--mixup-off-epoch', type=int, default=0,
                        help='how many last epochs to train without mixup, default is 0.')
    parser.add_argument('--label-smoothing', action='store_true',
                        help='use label smoothing or not in training. default is false.')
    parser.add_argument('--no-wd', action='store_true',
                        help='whether to remove weight decay on bias, and beta/gamma for batchnorm layers.')
    parser.add_argument('--final-drop', type=float, default=0.,
                        help='whether to use dropout before the laster classifier. default: 0 (disable).')
    parser.add_argument('--save-frequency', type=int, default=10,
                        help='frequency of model saving.')
    parser.add_argument('--save-dir', type=str, default='params',
                        help='directory of saved models')
    parser.add_argument('--resume-epoch', type=int, default=0,
                        help='epoch to resume training from.')
    parser.add_argument('--resume-params', type=str, default='',
                        help='path of parameters to load from.')
    parser.add_argument('--resume-states', type=str, default='',
                        help='path of trainer state to load from.')
    parser.add_argument('--log-interval', type=int, default=50,
                        help='Number of batches to wait before logging.')
    parser.add_argument('--logging-file', type=str, default='train_imagenet.log',
                        help='name of training log file')
    opt = parser.parse_args()
    return opt