online_attacks/classifiers/cifar/models/resnet.py [25:39]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        self.shortcut = nn.Sequential()
        if stride != 1 or in_planes != self.expansion * planes:
            self.shortcut = nn.Sequential(
                nn.Conv2d(
                    in_planes,
                    self.expansion * planes,
                    kernel_size=1,
                    stride=stride,
                    bias=False,
                ),
                nn.BatchNorm2d(self.expansion * planes),
            )

    def forward(self, x):
        out = F.relu(self.bn1(self.conv1(x)))
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



online_attacks/classifiers/cifar/models/resnet.py [62:76]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
        self.shortcut = nn.Sequential()
        if stride != 1 or in_planes != self.expansion * planes:
            self.shortcut = nn.Sequential(
                nn.Conv2d(
                    in_planes,
                    self.expansion * planes,
                    kernel_size=1,
                    stride=stride,
                    bias=False,
                ),
                nn.BatchNorm2d(self.expansion * planes),
            )

    def forward(self, x):
        out = F.relu(self.bn1(self.conv1(x)))
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



