in kmedoids.py [0:0]
def kMedoids(D, k, tmax=10000):
# determine dimensions of distance matrix D
m, n = D.shape
if k > n:
raise Exception('too many medoids')
# find a set of valid initial cluster medoid indices since we
# can't seed different clusters with two points at the same location
valid_medoid_inds = set(range(n))
invalid_medoid_inds = set([])
rs, cs = np.where(D == 0)
# the rows, cols must be shuffled because we will keep the first duplicate below
index_shuf = list(range(len(rs)))
np.random.shuffle(index_shuf)
rs = rs[index_shuf]
cs = cs[index_shuf]
for r, c in zip(rs, cs):
# if there are two points with a distance of 0...
# keep the first one for cluster init
if r < c and r not in invalid_medoid_inds:
invalid_medoid_inds.add(c)
valid_medoid_inds = list(valid_medoid_inds - invalid_medoid_inds)
if k > len(valid_medoid_inds):
raise Exception('too many medoids (after removing {} duplicate points)'.format(
len(invalid_medoid_inds)))
# randomly initialize an array of k medoid indices
M = np.array(valid_medoid_inds)
np.random.shuffle(M)
M = np.sort(M[:k])
# for i in np.unique(spectral_labels):
# idx = list(np.where(spectral_labels == i)[0])
# M[i] = random.sample(idx, 1)[0]
# create a copy of the array of medoid indices
Mnew = np.copy(M)
# initialize a dictionary to represent clusters
C = {}
for t in range(tmax):
# determine clusters, i. e. arrays of data indices
J = np.argmin(D[:, M], axis=1)
for kappa in range(k):
C[kappa] = np.where(J == kappa)[0]
# update cluster medoids
for kappa in range(k):
J = np.mean(D[np.ix_(C[kappa], C[kappa])], axis=1)
j = np.argmin(J)
Mnew[kappa] = C[kappa][j]
np.sort(Mnew)
# check for convergence
if np.array_equal(M, Mnew):
break
M = np.copy(Mnew)
else:
# final update of cluster memberships
J = np.argmin(D[:, M], axis=1)
for kappa in range(k):
C[kappa] = np.where(J == kappa)[0]
labels = np.empty((n))
for k in C.keys():
labels[list(C[k])] = str(k)
# return results
return labels