facebookresearch / PointContrast
File Size

The distribution of size of files (measured in lines of code).

Intro
  • File size measurements show the distribution of size of files.
  • Files are classified in four categories based on their size (lines of code): 1-100 (very small files), 101-200 (small files), 201-500 (medium size files), 501-1000 (long files), 1001+(very long files).
  • It is a good practice to keep files small. Long files may become "bloaters", code that have increased to such gargantuan proportions that they are hard to work with.
Learn more...
File Size Overall
  • There are 128 files with 13,737 lines of code.
    • 0 very long files (0 lines of code)
    • 1 long files (622 lines of code)
    • 19 medium size files (5,255 lines of codeclsfd_ftr_w_mp_ins)
    • 32 small files (4,691 lines of code)
    • 76 very small files (3,169 lines of code)
0% | 4% | 38% | 34% | 23%
Legend:
1001+
501-1000
201-500
101-200
1-100


explore: zoomable circles | sunburst | 3D view
File Size per Extension
1001+
501-1000
201-500
101-200
1-100
py0% | 4% | 40% | 35% | 19%
cu0% | 0% | 45% | 29% | 25%
yaml0% | 0% | 0% | 35% | 64%
cpp0% | 0% | 0% | 0% | 100%
m0% | 0% | 0% | 0% | 100%
h0% | 0% | 0% | 0% | 100%
File Size per Logical Decomposition
primary
1001+
501-1000
201-500
101-200
1-100
pretrain/data_preprocess/scannet_pair0% | 69% | 0% | 11% | 19%
downstream/votenet_det_new/models0% | 0% | 39% | 34% | 26%
downstream/votenet_det_new/lib0% | 0% | 36% | 36% | 26%
downstream/semseg/lib0% | 0% | 36% | 47% | 16%
pretrain/pointcontrast/lib0% | 0% | 81% | 0% | 18%
downstream/semseg/models0% | 0% | 55% | 26% | 18%
pretrain/pointcontrast/model0% | 0% | 37% | 46% | 16%
downstream/semseg0% | 0% | 0% | 100% | 0%
downstream/votenet_det_new0% | 0% | 0% | 100% | 0%
downstream/semseg/config0% | 0% | 0% | 70% | 29%
pretrain/pointcontrast/config0% | 0% | 0% | 0% | 100%
downstream/votenet_det_new/config0% | 0% | 0% | 0% | 100%
pretrain/pointcontrast0% | 0% | 0% | 0% | 100%
Longest Files (Top 50)
File# lines# units
plyfile.py
in pretrain/data_preprocess/scannet_pair
622 65
resunet.py
in downstream/semseg/models
418 7
resunet.py
in downstream/votenet_det_new/models/backbone/sparseconv/models
418 7
ddp_trainer.py
in pretrain/pointcontrast/lib
335 13
pointnet2_modules.py
in downstream/votenet_det_new/models/backbone/pointnet2
325 12
pc_util.py
in downstream/votenet_det_new/lib/utils
322 25
utils.py
in downstream/semseg/lib
304 35
dataset.py
in downstream/semseg/lib
285 19
res16unet.py
in downstream/semseg/models
277 4
res16unet.py
in downstream/votenet_det_new/models/backbone/sparseconv/models
276 4
sunrgbd_data.py
in downstream/votenet_det_new/lib/datasets/sunrgbd
257 9
sunrgbd_utils.py
in downstream/votenet_det_new/lib/datasets/sunrgbd
245 28
pc_utils.py
in downstream/semseg/lib
237 21
pytorch_utils.py
in downstream/votenet_det_new/models/backbone/pointnet2
237 13
res16unet.py
in pretrain/pointcontrast/model
233 3
ddp_data_loaders.py
in pretrain/pointcontrast/lib
230 12
distributed.py
in pretrain/pointcontrast/lib
223 23
config.py
in downstream/votenet_det_new/models/backbone/sparseconv
218 6
cu
sampling_gpu.cu
in downstream/votenet_det_new/models/backbone/pointnet2/_ext_src/src
212 -
box_util.py
in downstream/votenet_det_new/lib/utils
203 13
transforms.py
in downstream/semseg/lib
195 23
sunrgbd_detection_dataset.py
in downstream/votenet_det_new/lib/datasets/sunrgbd
194 6
ap_helper.py
in downstream/votenet_det_new/models
192 9
pointnet2_utils.py
in downstream/votenet_det_new/models/backbone/pointnet2
186 18
ddp_main.py
in downstream/semseg
184 4
stanford.py
in downstream/semseg/lib/datasets
176 5
common.py
in downstream/semseg/models/modules
168 10
common.py
in downstream/votenet_det_new/models/backbone/sparseconv/models/modules
168 10
common.py
in pretrain/pointcontrast/model/modules
164 10
resnet.py
in downstream/semseg/models
160 6
resnet.py
in downstream/votenet_det_new/models/backbone/sparseconv/models
160 6
train.py
in downstream/semseg/lib
154 4
voxelizer.py
in downstream/votenet_det_new/models/backbone/sparseconv
152 7
test.py
in downstream/semseg/lib
150 3
eval_det.py
in downstream/votenet_det_new/lib/utils
148 8
train.py
in downstream/votenet_det_new/lib
147 5
scannet.py
in downstream/semseg/lib/datasets
142 4
scannet_detection_dataset.py
in downstream/votenet_det_new/lib/datasets/scannet
142 5
nms.py
in downstream/votenet_det_new/lib/utils
142 5
distributed_utils.py
in downstream/semseg/lib
139 9
distributed_utils.py
in downstream/votenet_det_new/lib/utils
139 9
cu
interpolate_gpu.cu
in downstream/votenet_det_new/models/backbone/pointnet2/_ext_src/src
136 -
ddp_main.py
in downstream/votenet_det_new
134 4
resnet.py
in pretrain/pointcontrast/model
126 6
loss_helper.py
in downstream/votenet_det_new/models
122 4
backbone_module.py
in downstream/votenet_det_new/models
121 5
conditional_random_fields.py
in downstream/votenet_det_new/models/backbone/sparseconv/models
118 5
voxelizer.py
in downstream/semseg/lib
110 6
dump_helper.py
in downstream/votenet_det_new/models
109 2
load_scannet_data.py
in downstream/votenet_det_new/lib/datasets/scannet
109 4
Files With Most Units (Top 20)
File# lines# units
plyfile.py
in pretrain/data_preprocess/scannet_pair
622 65
utils.py
in downstream/semseg/lib
304 35
sunrgbd_utils.py
in downstream/votenet_det_new/lib/datasets/sunrgbd
245 28
pc_util.py
in downstream/votenet_det_new/lib/utils
322 25
transforms.py
in downstream/semseg/lib
195 23
distributed.py
in pretrain/pointcontrast/lib
223 23
pc_utils.py
in downstream/semseg/lib
237 21
dataset.py
in downstream/semseg/lib
285 19
pointnet2_utils.py
in downstream/votenet_det_new/models/backbone/pointnet2
186 18
pytorch_utils.py
in downstream/votenet_det_new/models/backbone/pointnet2
237 13
box_util.py
in downstream/votenet_det_new/lib/utils
203 13
ddp_trainer.py
in pretrain/pointcontrast/lib
335 13
pointnet2_modules.py
in downstream/votenet_det_new/models/backbone/pointnet2
325 12
SensorData.py
in pretrain/data_preprocess/scannet_pair
102 12
ddp_data_loaders.py
in pretrain/pointcontrast/lib
230 12
common.py
in downstream/semseg/models/modules
168 10
layers.py
in downstream/semseg/lib
66 10
common.py
in downstream/votenet_det_new/models/backbone/sparseconv/models/modules
168 10
common.py
in pretrain/pointcontrast/model/modules
164 10
distributed_utils.py
in downstream/semseg/lib
139 9
Files With Long Lines (Top 20)

There are 21 files with lines longer than 120 characters. In total, there are 49 long lines.

File# lines# units# long lines
dump_helper.py
in downstream/votenet_det_new/models
109 2 11
loss_helper.py
in downstream/votenet_det_new/models
122 4 7
ap_helper.py
in downstream/votenet_det_new/models
192 9 5
proposal_module.py
in downstream/votenet_det_new/models
88 3 4
utils.py
in downstream/semseg/lib
304 35 3
model_util_sunrgbd.py
in downstream/votenet_det_new/lib/datasets/sunrgbd
70 6 2
eval_det.py
in downstream/votenet_det_new/lib/utils
148 8 2
train.py
in downstream/votenet_det_new/lib
147 5 2
transforms.py
in downstream/semseg/lib
195 23 1
train.py
in downstream/semseg/lib
154 4 1
loss_helper_boxnet.py
in downstream/votenet_det_new/models
60 2 1
backbone_module.py
in downstream/votenet_det_new/models
121 5 1
pointnet2_utils.py
in downstream/votenet_det_new/models/backbone/pointnet2
186 18 1
sunrgbd_utils.py
in downstream/votenet_det_new/lib/datasets/sunrgbd
245 28 1
sunrgbd_data.py
in downstream/votenet_det_new/lib/datasets/sunrgbd
257 9 1
extract_rgbd_data_v2.m
in downstream/votenet_det_new/lib/datasets/sunrgbd/matlab
76 - 1
extract_rgbd_data_v1.m
in downstream/votenet_det_new/lib/datasets/sunrgbd/matlab
49 - 1
pc_util.py
in downstream/votenet_det_new/lib/utils
322 25 1
point_cloud_extractor.py
in pretrain/data_preprocess/scannet_pair
61 1 1
compute_full_overlapping.py
in pretrain/data_preprocess/scannet_pair
62 3 1