downstream/votenet_det_new/models/backbone/sparseconv/models/modules/resnet_block.py [13:64]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
class BasicBlockBase(nn.Module):
  expansion = 1
  NORM_TYPE = NormType.BATCH_NORM

  def __init__(self,
               inplanes,
               planes,
               stride=1,
               dilation=1,
               downsample=None,
               conv_type=ConvType.HYPERCUBE,
               bn_momentum=0.1,
               D=3):
    super(BasicBlockBase, self).__init__()

    self.conv1 = conv(
        inplanes, planes, kernel_size=3, stride=stride, dilation=dilation, conv_type=conv_type, D=D)
    self.norm1 = get_norm(self.NORM_TYPE, planes, D, bn_momentum=bn_momentum)
    self.conv2 = conv(
        planes,
        planes,
        kernel_size=3,
        stride=1,
        dilation=dilation,
        bias=False,
        conv_type=conv_type,
        D=D)
    self.norm2 = get_norm(self.NORM_TYPE, planes, D, bn_momentum=bn_momentum)
    self.relu = MinkowskiReLU(inplace=True)
    self.downsample = downsample

  def forward(self, x):
    residual = x

    out = self.conv1(x)
    out = self.norm1(out)
    out = self.relu(out)

    out = self.conv2(out)
    out = self.norm2(out)

    if self.downsample is not None:
      residual = self.downsample(x)

    out += residual
    out = self.relu(out)

    return out


class BasicBlock(BasicBlockBase):
  NORM_TYPE = NormType.BATCH_NORM
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



pretrain/pointcontrast/model/modules/resnet_block.py [13:63]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
class BasicBlockBase(nn.Module):
  expansion = 1
  NORM_TYPE = NormType.BATCH_NORM

  def __init__(self,
               inplanes,
               planes,
               stride=1,
               dilation=1,
               downsample=None,
               conv_type=ConvType.HYPERCUBE,
               bn_momentum=0.1,
               D=3):
    super(BasicBlockBase, self).__init__()

    self.conv1 = conv(
        inplanes, planes, kernel_size=3, stride=stride, dilation=dilation, conv_type=conv_type, D=D)
    self.norm1 = get_norm(self.NORM_TYPE, planes, D, bn_momentum=bn_momentum)
    self.conv2 = conv(
        planes,
        planes,
        kernel_size=3,
        stride=1,
        dilation=dilation,
        bias=False,
        conv_type=conv_type,
        D=D)
    self.norm2 = get_norm(self.NORM_TYPE, planes, D, bn_momentum=bn_momentum)
    self.relu = MinkowskiReLU(inplace=True)
    self.downsample = downsample

  def forward(self, x):
    residual = x

    out = self.conv1(x)
    out = self.norm1(out)
    out = self.relu(out)

    out = self.conv2(out)
    out = self.norm2(out)

    if self.downsample is not None:
      residual = self.downsample(x)

    out += residual
    out = self.relu(out)

    return out

class BasicBlock(BasicBlockBase):
  NORM_TYPE = NormType.BATCH_NORM
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



