in downstream/votenet_det_new/models/backbone/sparseconv/models/resunet.py [0:0]
def network_initialization(self, in_channels, out_channels, config, D):
# Setup net_metadata
dilations = self.DILATIONS
bn_momentum = config.bn_momentum
def space_n_time_m(n, m):
return n if D == 3 else [n, n, n, m]
if D == 4:
self.OUT_PIXEL_DIST = space_n_time_m(self.OUT_PIXEL_DIST, 1)
# Output of the first conv concated to conv6
self.inplanes = self.INIT_DIM
self.conv1p1s1 = conv(
in_channels,
self.inplanes,
kernel_size=space_n_time_m(config.conv1_kernel_size, 1),
stride=1,
dilation=1,
conv_type=self.NON_BLOCK_CONV_TYPE,
D=D)
self.bn1 = get_norm(self.NORM_TYPE, self.PLANES[0], D, bn_momentum=bn_momentum)
self.block1 = self._make_layer(
self.BLOCK,
self.PLANES[0],
self.LAYERS[0],
dilation=dilations[0],
norm_type=self.NORM_TYPE,
bn_momentum=bn_momentum)
self.conv2p1s2 = conv(
self.inplanes,
self.inplanes,
kernel_size=space_n_time_m(2, 1),
stride=space_n_time_m(2, 1),
dilation=1,
conv_type=self.NON_BLOCK_CONV_TYPE,
D=D)
self.bn2 = get_norm(self.NORM_TYPE, self.inplanes, D, bn_momentum=bn_momentum)
self.block2 = self._make_layer(
self.BLOCK,
self.PLANES[1],
self.LAYERS[1],
dilation=dilations[1],
norm_type=self.NORM_TYPE,
bn_momentum=bn_momentum)
self.conv3p2s2 = conv(
self.inplanes,
self.inplanes,
kernel_size=space_n_time_m(2, 1),
stride=space_n_time_m(2, 1),
dilation=1,
conv_type=self.NON_BLOCK_CONV_TYPE,
D=D)
self.bn3 = get_norm(self.NORM_TYPE, self.inplanes, D, bn_momentum=bn_momentum)
self.block3 = self._make_layer(
self.BLOCK,
self.PLANES[2],
self.LAYERS[2],
dilation=dilations[2],
norm_type=self.NORM_TYPE,
bn_momentum=bn_momentum)
self.conv4p4s2 = conv(
self.inplanes,
self.inplanes,
kernel_size=space_n_time_m(2, 1),
stride=space_n_time_m(2, 1),
dilation=1,
conv_type=self.NON_BLOCK_CONV_TYPE,
D=D)
self.bn4 = get_norm(self.NORM_TYPE, self.inplanes, D, bn_momentum=bn_momentum)
self.block4 = self._make_layer(
self.BLOCK,
self.PLANES[3],
self.LAYERS[3],
dilation=dilations[3],
norm_type=self.NORM_TYPE,
bn_momentum=bn_momentum)
self.convtr4p8s2 = conv_tr(
self.inplanes,
self.PLANES[4],
kernel_size=space_n_time_m(2, 1),
upsample_stride=space_n_time_m(2, 1),
dilation=1,
bias=False,
conv_type=self.NON_BLOCK_CONV_TYPE,
D=D)
self.bntr4 = get_norm(self.NORM_TYPE, self.PLANES[4], D, bn_momentum=bn_momentum)
self.inplanes = self.PLANES[4] + self.PLANES[2] * self.BLOCK.expansion
self.block5 = self._make_layer(
self.BLOCK,
self.PLANES[4],
self.LAYERS[4],
dilation=dilations[4],
norm_type=self.NORM_TYPE,
bn_momentum=bn_momentum)
self.convtr5p4s2 = conv_tr(
self.inplanes,
self.PLANES[5],
kernel_size=space_n_time_m(2, 1),
upsample_stride=space_n_time_m(2, 1),
dilation=1,
bias=False,
conv_type=self.NON_BLOCK_CONV_TYPE,
D=D)
self.bntr5 = get_norm(self.NORM_TYPE, self.PLANES[5], D, bn_momentum=bn_momentum)
self.inplanes = self.PLANES[5] + self.PLANES[1] * self.BLOCK.expansion
self.block6 = self._make_layer(
self.BLOCK,
self.PLANES[5],
self.LAYERS[5],
dilation=dilations[5],
norm_type=self.NORM_TYPE,
bn_momentum=bn_momentum)
self.convtr6p2s2 = conv_tr(
self.inplanes,
self.PLANES[6],
kernel_size=space_n_time_m(2, 1),
upsample_stride=space_n_time_m(2, 1),
dilation=1,
bias=False,
conv_type=self.NON_BLOCK_CONV_TYPE,
D=D)
self.bntr6 = get_norm(self.NORM_TYPE, self.PLANES[6], D, bn_momentum=bn_momentum)
self.relu = MinkowskiReLU(inplace=True)
self.final = nn.Sequential(
conv(
self.PLANES[6] + self.PLANES[0] * self.BLOCK.expansion,
512,
kernel_size=1,
stride=1,
dilation=1,
bias=False,
D=D), ME.MinkowskiBatchNorm(512), ME.MinkowskiReLU(),
conv(512, out_channels, kernel_size=1, stride=1, dilation=1, bias=True, D=D))