def test()

in downstream/votenet_det_new/lib/test.py [0:0]


def test(net, test_dataloader, dataset_config, config):
    if config.test.use_cls_nms:
        assert(config.test.use_3d_nms)
    # Used for AP calculation
    CONFIG_DICT = {'remove_empty_box': (not config.test.faster_eval), 
                   'use_3d_nms': config.test.use_3d_nms, 
                   'nms_iou': config.test.nms_iou,
                   'use_old_type_nms': config.test.use_old_type_nms, 
                   'cls_nms': config.test.use_cls_nms, 
                   'per_class_proposal': config.test.per_class_proposal,
                   'conf_thresh': config.test.conf_thresh, 
                   'dataset_config': dataset_config}

    AP_IOU_THRESHOLDS = config.test.ap_iou_thresholds
    logging.info(str(datetime.now()))
    # Reset numpy seed.
    # REF: https://github.com/pytorch/pytorch/issues/5059
    np.random.seed()

    stat_dict = {}
    ap_calculator_list = [APCalculator(iou_thresh, CONFIG_DICT['dataset_config'].class2type) \
        for iou_thresh in AP_IOU_THRESHOLDS]
    net.eval() # set model to eval mode (for bn and dp)
    for batch_idx, batch_data_label in enumerate(test_dataloader):
        if batch_idx % 10 == 0:
            print('Eval batch: %d'%(batch_idx))
        for key in batch_data_label:
            batch_data_label[key] = batch_data_label[key].cuda()
        # Forward pass
        inputs = {'point_clouds': batch_data_label['point_clouds']}
        if 'voxel_coords' in batch_data_label:
            inputs.update({
                'voxel_coords': batch_data_label['voxel_coords'],
                'voxel_inds':   batch_data_label['voxel_inds'],
                'voxel_feats':  batch_data_label['voxel_feats']})
        with torch.no_grad():
            end_points = net(inputs)

        # Compute loss
        for key in batch_data_label:
            assert(key not in end_points)
            end_points[key] = batch_data_label[key]
        loss, end_points = criterion(end_points, CONFIG_DICT['dataset_config'])

        # Accumulate statistics and print out
        for key in end_points:
            if 'loss' in key or 'acc' in key or 'ratio' in key:
                if key not in stat_dict: stat_dict[key] = 0
                stat_dict[key] += end_points[key].item()

        batch_pred_map_cls = parse_predictions(end_points, CONFIG_DICT) 
        batch_gt_map_cls = parse_groundtruths(end_points, CONFIG_DICT) 
        for ap_calculator in ap_calculator_list:
            ap_calculator.step(batch_pred_map_cls, batch_gt_map_cls)
    
        # Dump evaluation results for visualization
        if batch_idx == 0:
            dump_results(end_points, 'visualization', CONFIG_DICT['dataset_config'])

    # Log statistics
    for key in sorted(stat_dict.keys()):
        logging.info('eval mean %s: %f'%(key, stat_dict[key]/(float(batch_idx+1))))

    # Evaluate average precision
    for i, ap_calculator in enumerate(ap_calculator_list):
        logging.info('-'*10 + 'iou_thresh: %f'%(AP_IOU_THRESHOLDS[i]) + '-'*10)
        metrics_dict = ap_calculator.compute_metrics()
        for key in metrics_dict:
            logging.info('eval %s: %f'%(key, metrics_dict[key]))

    mean_loss = stat_dict['loss']/float(batch_idx+1)
    return mean_loss