visualization_utils/plotting-ying.py [905:939]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    PA_column_experiment_value = {}
    FARSI_column_experiment_value = {}

    #column_name = "move name"
    for k, file_full_addr in enumerate(file_full_addr_list):
        for y_column_name in y_column_name_list:
            # get all possible the values of interest
            y_column_number = res_column_name_number[y_column_name]
            x_column_number = res_column_name_number[x_column_name]
            PA_column_experiment_value[y_column_name] = []
            FARSI_column_experiment_value[y_column_name] = []
            PA_last_time = 0
            FARSI_last_time = 0
            with open(file_full_addr, newline='') as csvfile:
                resultReader = csv.reader(csvfile, delimiter=',', quotechar='|')
                experiment_name = get_experiments_name( file_full_addr, res_column_name_number)
                for i, row in enumerate(resultReader):
                    #if row[trueNum] != "True":
                    #    continue
                    if i >= 1:
                        FARSI_last_time += float(row[x_column_number])
                        FARSI_value_to_add = (float(FARSI_last_time), row[y_column_number])
                        FARSI_column_experiment_value[y_column_name].append(FARSI_value_to_add)

                        PA_last_time = FARSI_last_time*PA_time_scaling_factor
                        PA_value_to_add = (float(PA_last_time), row[y_column_number])
                        PA_column_experiment_value[y_column_name].append(PA_value_to_add)

                # prepare for plotting and plot
                fig = plt.figure(figsize=(12, 12))
                plt.rc('font', **axis_font)
                ax = fig.add_subplot(111)
                fontSize = 20
                #plt.tight_layout()
                x_values = [el[0] for el in FARSI_column_experiment_value[y_column_name]]
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



visualization_utils/plotting.py [1421:1455]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
    PA_column_experiment_value = {}
    FARSI_column_experiment_value = {}

    #column_name = "move name"
    for k, file_full_addr in enumerate(file_full_addr_list):
        for y_column_name in y_column_name_list:
            # get all possible the values of inteFARSI_results/blind_study_all_dumb_versionrest
            y_column_number = res_column_name_number[y_column_name]
            x_column_number = res_column_name_number[x_column_name]
            PA_column_experiment_value[y_column_name] = []
            FARSI_column_experiment_value[y_column_name] = []
            PA_last_time = 0
            FARSI_last_time = 0
            with open(file_full_addr, newline='') as csvfile:
                resultReader = csv.reader(csvfile, delimiter=',', quotechar='|')
                experiment_name = get_experiments_name( file_full_addr, res_column_name_number)
                for i, row in enumerate(resultReader):
                    #if row[trueNum] != "True":
                    #    continue
                    if i >= 1:
                        FARSI_last_time += float(row[x_column_number])
                        FARSI_value_to_add = (float(FARSI_last_time), row[y_column_number])
                        FARSI_column_experiment_value[y_column_name].append(FARSI_value_to_add)

                        PA_last_time = FARSI_last_time*PA_time_scaling_factor
                        PA_value_to_add = (float(PA_last_time), row[y_column_number])
                        PA_column_experiment_value[y_column_name].append(PA_value_to_add)

                # prepare for plotting and plot
                fig = plt.figure(figsize=(12, 12))
                plt.rc('font', **axis_font)
                ax = fig.add_subplot(111)
                fontSize = 20
                #plt.tight_layout()
                x_values = [el[0] for el in FARSI_column_experiment_value[y_column_name]]
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



