visualization_utils/plotting-ying.py [341:381]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
                        last_row = rows[i - 1]
                        if row[y_column_number] not in all_values or row[move_name_number]=="identity":
                            continue

                        col_value = row[y_column_number]
                        col_values = col_value.split(";")
                        for idx, col_val in enumerate(col_values):


                            # only for improvement
                            if float(row[ref_des_dis_to_goal_column_number]) - float(row[dis_to_goal_column_number]) < 0:
                                continue

                            delta_x_column = (float(row[x_column_number]) - float(last_row[x_column_number]))/len(col_values)
                            delta_improvement = (float(last_row[dis_to_goal_column_number]) - float(row[dis_to_goal_column_number]))/(float(last_row[dis_to_goal_column_number])*len(col_values))


                            if not col_val == last_col_val and i > 1:
                                if not last_row_change == "":
                                    distance_from_last_change =  float(last_row[x_column_number]) - float(last_row_change[x_column_number]) + idx * delta_x_column
                                    column_co_design_dist[y_column_name].append(distance_from_last_change)
                                    improvement_from_last_change =  (float(last_row[dis_to_goal_column_number]) - float(row[dis_to_goal_column_number]))/float(last_row[dis_to_goal_column_number])  + idx *delta_improvement
                                    column_co_design_improvement[y_column_name].append(improvement_from_last_change)

                                last_row_change = copy.deepcopy(last_row)


                            last_col_val = col_val



            # co_des cnt
            # we ignore the first element as the first element distance is always zero
            co_design_dist_sum = 0
            co_design_efficacy_sum = 0
            avg_ctr = 1
            co_design_dist_selected = column_co_design_dist[y_column_name]
            co_design_improvement_selected = column_co_design_improvement[y_column_name]
            for idx,el in enumerate(column_co_design_dist[y_column_name]):
                if idx == len(co_design_dist_selected) - 1:
                    break
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



visualization_utils/plotting.py [507:547]:
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
                        last_row = rows[i - 1]
                        if row[y_column_number] not in all_values or row[move_name_number]=="identity":
                            continue

                        col_value = row[y_column_number]
                        col_values = col_value.split(";")
                        for idx, col_val in enumerate(col_values):


                            # only for improvement
                            if float(row[ref_des_dis_to_goal_column_number]) - float(row[dis_to_goal_column_number]) < 0:
                                continue

                            delta_x_column = (float(row[x_column_number]) - float(last_row[x_column_number]))/len(col_values)
                            delta_improvement = (float(last_row[dis_to_goal_column_number]) - float(row[dis_to_goal_column_number]))/(float(last_row[dis_to_goal_column_number])*len(col_values))


                            if not col_val == last_col_val and i > 1:
                                if not last_row_change == "":
                                    distance_from_last_change =  float(last_row[x_column_number]) - float(last_row_change[x_column_number]) + idx * delta_x_column
                                    column_co_design_dist[y_column_name].append(distance_from_last_change)
                                    improvement_from_last_change =  (float(last_row[dis_to_goal_column_number]) - float(row[dis_to_goal_column_number]))/float(last_row[dis_to_goal_column_number])  + idx *delta_improvement
                                    column_co_design_improvement[y_column_name].append(improvement_from_last_change)

                                last_row_change = copy.deepcopy(last_row)


                            last_col_val = col_val



            # co_des cnt
            # we ignore the first element as the first element distance is always zero
            co_design_dist_sum = 0
            co_design_efficacy_sum = 0
            avg_ctr = 1
            co_design_dist_selected = column_co_design_dist[y_column_name]
            co_design_improvement_selected = column_co_design_improvement[y_column_name]
            for idx,el in enumerate(column_co_design_dist[y_column_name]):
                if idx == len(co_design_dist_selected) - 1:
                    break
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -



