def plot_codesign_rate_efficacy_per_workloads()

in visualization_utils/plotting-ying.py [0:0]


def plot_codesign_rate_efficacy_per_workloads(input_dir_names, res_column_name_number):
    #itrColNum = all_res_column_name_number["iteration cnt"]
    #distColNum = all_res_column_name_number["dist_to_goal_non_cost"]
    trueNum  =  all_res_column_name_number["move validity"]
    move_name_number =  all_res_column_name_number["move name"]

    # experiment_names
    file_full_addr_list = []
    for dir_name in input_dir_names:
        file_full_addr = os.path.join(dir_name, "result_summary/FARSI_simple_run_0_1_all_reults.csv")
        file_full_addr_list.append(file_full_addr)

    axis_font = {'fontname': 'Arial', 'size': '4'}
    x_column_name = "iteration cnt"
    #y_column_name_list = ["high level optimization name", "exact optimization name", "architectural principle", "comm_comp"]
    y_column_name_list = ["exact optimization name",  "architectural principle", "comm_comp", "workload"]

    #y_column_name_list = ["high level optimization name", "exact optimization name", "architectural principle", "comm_comp"]



    column_co_design_cnt = {}
    column_non_co_design_cnt = {}
    column_co_design_rate = {}
    column_non_co_design_rate = {}
    column_co_design_efficacy_rate = {}
    column_non_co_design_efficacy_rate = {}
    column_non_co_design_efficacy = {}
    column_co_design_efficacy= {}
    last_col_val = ""
    for file_full_addr in file_full_addr_list:
        experiment_name = get_experiments_name(file_full_addr, res_column_name_number)
        column_co_design_cnt = {}
        for y_column_name in y_column_name_list:
            y_column_number = res_column_name_number[y_column_name]
            x_column_number = res_column_name_number[x_column_name]


            dis_to_goal_column_number = res_column_name_number["dist_to_goal_non_cost"]
            ref_des_dis_to_goal_column_number = res_column_name_number["ref_des_dist_to_goal_non_cost"]
            column_co_design_cnt[y_column_name] = []
            column_non_co_design_cnt[y_column_name] = []

            column_non_co_design_efficacy[y_column_name] = []
            column_co_design_efficacy[y_column_name] = []

            all_values = get_all_col_values_of_a_folders(input_dir_names, all_res_column_name_number, y_column_name)

            with open(file_full_addr, newline='') as csvfile:
                resultReader = csv.reader(csvfile, delimiter=',', quotechar='|')
                rows = list(resultReader)
                for i, row in enumerate(rows):
                    if i >= 1:
                        last_row = rows[i - 1]
                        if row[y_column_number] not in all_values or row[trueNum] == "False" or row[move_name_number]=="identity":
                            continue

                        col_value = row[y_column_number]
                        col_values = col_value.split(";")
                        for idx, col_val in enumerate(col_values):
                            delta_x_column = (float(row[x_column_number]) - float(last_row[x_column_number]))/len(col_values)

                            value_to_add_1 = (float(last_row[x_column_number]) + idx * delta_x_column, 1)
                            value_to_add_0 = (float(last_row[x_column_number]) + idx * delta_x_column, 0)

                            # only for improvement
                            if float(row[ref_des_dis_to_goal_column_number]) - float(row[dis_to_goal_column_number]) < 0:
                                continue

                            if not col_val == last_col_val:

                                column_co_design_cnt[y_column_name].append(value_to_add_1)
                                column_non_co_design_cnt[y_column_name].append(value_to_add_0)
                                column_co_design_efficacy[y_column_name].append((float(row[ref_des_dis_to_goal_column_number]) - float(row[dis_to_goal_column_number]))/float(row[ref_des_dis_to_goal_column_number]))
                                column_non_co_design_efficacy[y_column_name].append(0)
                            else:
                                column_co_design_cnt[y_column_name].append(value_to_add_0)
                                column_non_co_design_cnt[y_column_name].append(value_to_add_1)
                                column_co_design_efficacy[y_column_name].append(0)
                                column_non_co_design_efficacy[y_column_name].append((float(row[ref_des_dis_to_goal_column_number]) - float(row[dis_to_goal_column_number]))/float(row[ref_des_dis_to_goal_column_number]))

                            last_col_val = col_val



            # co_des cnt
            x_values_co_design_cnt = [el[0] for el in column_co_design_cnt[y_column_name]]
            y_values_co_design_cnt = [el[1] for el in column_co_design_cnt[y_column_name]]
            y_values_co_design_cnt_total =sum(y_values_co_design_cnt)
            total_iter = x_values_co_design_cnt[-1]

            # non co_des cnt
            x_values_non_co_design_cnt = [el[0] for el in column_non_co_design_cnt[y_column_name]]
            y_values_non_co_design_cnt = [el[1] for el in column_non_co_design_cnt[y_column_name]]
            y_values_non_co_design_cnt_total =sum(y_values_non_co_design_cnt)

            column_co_design_rate[y_column_name] = y_values_co_design_cnt_total/total_iter
            column_non_co_design_rate[y_column_name] = y_values_non_co_design_cnt_total/total_iter

            # co_des efficacy
            y_values_co_design_efficacy =  column_co_design_efficacy[y_column_name]
            y_values_co_design_efficacy_total =sum(y_values_co_design_efficacy)


            # non co_des efficacy
            y_values_non_co_design_efficacy = column_non_co_design_efficacy[y_column_name]
            y_values_non_co_design_efficacy_total =sum(y_values_non_co_design_efficacy)

            column_co_design_efficacy_rate[y_column_name] = y_values_co_design_efficacy_total/(y_values_non_co_design_efficacy_total + y_values_co_design_efficacy_total)
            column_non_co_design_efficacy_rate[y_column_name] = y_values_non_co_design_efficacy_total/(y_values_non_co_design_efficacy_total + y_values_co_design_efficacy_total)


        result = {"rate":{}, "efficacy":{}}
        rate_column_co_design = {}

        result["rate"] =  {"co_design":column_co_design_rate, "non_co_design": column_non_co_design_rate}
        result["efficacy_rate"] =  {"co_design":column_co_design_efficacy_rate, "non_co_design": column_non_co_design_efficacy_rate}
        # prepare for plotting and plot


        plt.figure()
        plotdata = pd.DataFrame(result["rate"], index=y_column_name_list)
        fontSize = 10
        plotdata.plot(kind='bar', fontsize=fontSize, stacked=True)
        plt.xticks(fontsize=fontSize, rotation=6)
        plt.yticks(fontsize=fontSize)
        plt.xlabel("co design parameter", fontsize=fontSize)
        plt.ylabel("co design rate", fontsize=fontSize)
        plt.title("co desgin rate of different parameters",  fontsize=fontSize)

        # dump in the top folder
        output_base_dir = '/'.join(input_dir_names[0].split("/")[:-2])
        output_dir = os.path.join(output_base_dir, "single_workload/co_design_rate")
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)

        plt.savefig(os.path.join(output_dir,experiment_name +"_"+"co_design_rate_"+'_'.join(y_column_name_list)+".png"))
        plt.close('all')


        plt.figure()
        plotdata = pd.DataFrame(result["efficacy_rate"], index=y_column_name_list)
        fontSize = 10
        plotdata.plot(kind='bar', fontsize=fontSize, stacked=True)
        plt.xticks(fontsize=fontSize, rotation=6)
        plt.yticks(fontsize=fontSize)
        plt.xlabel("co design parameter", fontsize=fontSize)
        plt.ylabel("co design efficacy rate", fontsize=fontSize)
        plt.title("co design efficacy rate of different parameters", fontsize=fontSize)

        # dump in the top folder
        output_base_dir = '/'.join(input_dir_names[0].split("/")[:-2])
        output_dir = os.path.join(output_base_dir, "single_workload/co_design_rate")
        if not os.path.exists(output_dir):
            os.makedirs(output_dir)

        plt.savefig(os.path.join(output_dir,experiment_name+"_"+"co_design_efficacy_rate_"+'_'.join(y_column_name_list)+".png"))
        plt.close('all')