in run_exp.py [0:0]
def train(flags): # pylint: disable=too-many-branches, too-many-statements
if flags.xpid is None:
flags.xpid = 'torchbeast-%s' % time.strftime('%Y%m%d-%H%M%S')
plogger = file_writer.FileWriter(
xpid=flags.xpid,
xp_args=flags.__dict__,
rootdir=flags.savedir,
symlink_latest=False,
)
checkpointpath = os.path.expandvars(
os.path.expanduser('%s/%s/%s' % (flags.savedir, flags.xpid,
'model.tar')))
T = flags.unroll_length
B = flags.batch_size
flags.device = None
if not flags.disable_cuda and torch.cuda.is_available():
logging.info('Using CUDA.')
flags.device = torch.device('cuda')
else:
logging.info('Not using CUDA.')
flags.device = torch.device('cpu')
env = Net.create_env(flags)
model = Net.make(flags, env)
buffers = create_buffers(env.observation_space, len(env.action_space), flags)
model.share_memory()
actor_processes = []
ctx = mp.get_context('fork')
free_queue = ctx.SimpleQueue()
full_queue = ctx.SimpleQueue()
for i in range(flags.num_actors):
actor = ctx.Process(
target=act,
args=(i, free_queue, full_queue, model, buffers, flags))
actor.start()
actor_processes.append(actor)
learner_model = Net.make(flags, env).to(device=flags.device)
optimizer = torch.optim.RMSprop(
learner_model.parameters(),
lr=flags.learning_rate,
momentum=flags.momentum,
eps=flags.epsilon,
alpha=flags.alpha)
def lr_lambda(epoch):
return 1 - min(epoch * T * B, flags.total_frames) / flags.total_frames
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda)
if flags.resume:
save = torch.load(flags.resume, map_location='cpu')
learner_model.load_state_dict(save['model_state_dict'])
optimizer.load_state_dict(save['optimizer_state_dict'])
if flags.resume_scheduler:
scheduler.load_state_dict(save['scheduler_state_dict'])
# tune only the embedding layer
if flags.resume_strategy == 'emb':
keep = []
for group in optimizer.param_groups:
if group['params'][0].size() == (len(learner_model.vocab), flags.demb):
keep.append(group)
optimizer.param_groups = keep
logger = logging.getLogger('logfile')
stat_keys = [
'total_loss',
'mean_episode_return',
'pg_loss',
'baseline_loss',
'entropy_loss',
'aux_loss',
'mean_win_rate',
'mean_episode_len',
]
logger.info('# Step\t%s', '\t'.join(stat_keys))
frames, stats = 0, {}
def batch_and_learn(i, lock=threading.Lock()):
"""Thread target for the learning process."""
nonlocal frames, stats
timings = prof.Timings()
while frames < flags.total_frames:
timings.reset()
batch = get_batch(free_queue, full_queue, buffers, flags, timings)
stats = learn(model, learner_model, batch, optimizer, scheduler,
flags)
timings.time('learn')
with lock:
to_log = dict(frames=frames)
to_log.update({k: stats[k] for k in stat_keys})
plogger.log(to_log)
frames += T * B
if i == 0:
logging.info('Batch and learn: %s', timings.summary())
for m in range(flags.num_buffers):
free_queue.put(m)
threads = []
for i in range(flags.num_threads):
thread = threading.Thread(
target=batch_and_learn, name='batch-and-learn-%d' % i, args=(i,))
thread.start()
threads.append(thread)
def checkpoint():
if flags.disable_checkpoint:
return
logging.info('Saving checkpoint to %s', checkpointpath)
torch.save({
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'scheduler_state_dict': scheduler.state_dict(),
'flags': vars(flags),
}, checkpointpath)
timer = timeit.default_timer
try:
last_checkpoint_time = timer()
while frames < flags.total_frames:
start_frames = frames
start_time = timer()
time.sleep(5)
if timer() - last_checkpoint_time > 10 * 60: # Save every 10 min.
checkpoint()
last_checkpoint_time = timer()
fps = (frames - start_frames) / (timer() - start_time)
if stats.get('episode_returns', None):
mean_return = 'Return per episode: %.1f. ' % stats[
'mean_episode_return']
else:
mean_return = ''
total_loss = stats.get('total_loss', float('inf'))
logging.info('After %i frames: loss %f @ %.1f fps. %sStats:\n%s',
frames, total_loss, fps, mean_return,
pprint.pformat(stats))
except KeyboardInterrupt:
return # Try joining actors then quit.
else:
for thread in threads:
thread.join()
logging.info('Learning finished after %d frames.', frames)
finally:
for _ in range(flags.num_actors):
free_queue.put(None)
for actor in actor_processes:
actor.join(timeout=1)
checkpoint()
plogger.close()