in qlearn/commun/utils.py [0:0]
def initialize_weights(model):
for m in model.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels + m.in_channels
m.weight.data.normal_(0, math.sqrt(4. / n))
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d) or isinstance(m, nn.BatchNorm1d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
n = m.in_features + m.out_features
m.weight.data.normal_(0, math.sqrt(4. / n))
m.bias.data.zero_()