Summary: 86 instances, 73 unique Text Count # TODO: calculate log_prob for l2 normalization 1 # TODO: can we get this working well with jupyter? 1 # TODO: do priority sampling with torch as well. 1 # FIXME: Doesn't support LRScheduler yet 1 # TODO: we currently use the same data for test and validation. 2 # TODO (@czxttkl): use when we introduce padding 1 TODO: remove this file once we can infer everything. 2 # FIXME: this is a hack around https://github.com/PyTorchLightning/pytorch-lightning/pull/9360 1 # TODO for future cleanup: kind of a misnomer now, since not really "difference" 1 # TODO: write this for OSS 7 # TODO: handle possible actions/mask here 1 # TODO: have an embedder here 1 has_user_feat: bool = False # TODO: deprecate 1 minibatches_per_step (optional, TODO: currently unused): the number of minibatch updates 1 # TODO: handle value/mask of DocList 1 // TODO: Implement pid controller to replace this fixed shift 1 TODO: maybe replace with sparse-to-dense tensor function? 1 TODO: made environment easier to learn from by not using RecSim. 1 # TODO add Discrete Single Step Synthetic Reward Predictor 1 # TODO: consider possible_actions_mask 2 # TODO: Probably should create a new model type 1 TODO: implement for stack size > 1 2 # TODO: make this take in a 1 # TODO: calls to _maybe_run_optimizer removed, should be replaced with Trainer parameter 1 # TODO: Create a generic framework for type conversion 1 # TODO: rename underlying function to get_max_possible_values_and_idxs 1 # TODO: export these as observable values 2 # TODO: Implement ExtraData.from_dict 1 # TODO: log prob is affected by clamping, how to handle that? 1 # TODO: check to ensure no rl parameter value is set that isn't actively used by class 1 "sequence_number": 0, # TODO: Support sequences 1 # TODO: remove this dependency 1 # TODO: make this a property of EnvWrapper? 1 # TODO: should this be in base class? 1 # TODO: Add below get_data_module() method once methods in 1 # TODO: why is reward net commented out? 1 # TODO: remove RecsimObsPreprocessor and move it here 1 # TODO: finish 1 # TODO: abs value to make probability? 1 TODO: replace with redis (python) and hiredis (C) for better RASP support 1 # TODO: this wouldn't work for possible_actions_mask (list of value, presence) 1 # TODO: Move this to appropriate location 1 // TODO: Implement CDF of t-distribution for bayesian UCB 1 # TODO: T62502977 create learnable feature vectors for start symbol 1 # TODO assert regarding offsets length compared to value 1 # TODO: raise this bar after training stabilize 1 # TODO: Load tensors from torch files. 1 # TODO: rename "observation" to "state" in Transition and return cls(**d) 1 # TODO: Warmstarts means and vars using previous solutions (T48841404) 1 TODO: change this to a deterministic subsample. 1 # FIXME: calculate model_metrics_values when q_network_cpe is added 1 TODO: make this an embedder. 1 # TODO: make abstract 2 # TODO: can this line be hit currently in ReAgent? 1 # FIXME: hardcoded for now 1 # TODO: We probably should put member vars into local vars to 1 # TODO: Just use kwargs here? 2 # FIXME: this only works for one-hot encoded actions 1 FIXME: Remove this function after the issue above is resolved 1 # TODO: make return serving feature data 1 # TODO: make generic get_action_idxs for each trainer class 1 # FIXME: These config types are misplaced but we need to write FBL config adapter 1 # TODO: add more methods to simplify gym code 1 ) # TODO: if score cap not needed, deprecate 1 # FIXME: model_values and model_metrics_values should be 1 TODO: This function should return ReAgentLightningModule & 1 # TODO: Must setup (or mock) trainer and a LoggerConnector to call self.log()! 1 # TODO: Add option for simple modulo and other hash functions 1 # FIXME: epoch argument is not really correct 1 # TODO: write SlateQ Wrapper 1 # TODO: Save tensors to torch files. 1 # TODO: for OSS 1 # TODO: add in critic 1