def do_edge_split()

in utils.py [0:0]


def do_edge_split(dataset, fast_split=False, val_ratio=0.05, test_ratio=0.1):
    data = dataset[0]
    random.seed(234)
    torch.manual_seed(234)

    if not fast_split:
        data = train_test_split_edges(data, val_ratio, test_ratio)
        edge_index, _ = add_self_loops(data.train_pos_edge_index)
        data.train_neg_edge_index = negative_sampling(
            edge_index, num_nodes=data.num_nodes,
            num_neg_samples=data.train_pos_edge_index.size(1))
    else:
        num_nodes = data.num_nodes
        row, col = data.edge_index
        # Return upper triangular portion.
        mask = row < col
        row, col = row[mask], col[mask]
        n_v = int(math.floor(val_ratio * row.size(0)))
        n_t = int(math.floor(test_ratio * row.size(0)))
        # Positive edges.
        perm = torch.randperm(row.size(0))
        row, col = row[perm], col[perm]
        r, c = row[:n_v], col[:n_v]
        data.val_pos_edge_index = torch.stack([r, c], dim=0)
        r, c = row[n_v:n_v + n_t], col[n_v:n_v + n_t]
        data.test_pos_edge_index = torch.stack([r, c], dim=0)
        r, c = row[n_v + n_t:], col[n_v + n_t:]
        data.train_pos_edge_index = torch.stack([r, c], dim=0)
        # Negative edges (cannot guarantee (i,j) and (j,i) won't both appear)
        neg_edge_index = negative_sampling(
            data.edge_index, num_nodes=num_nodes,
            num_neg_samples=row.size(0))
        data.val_neg_edge_index = neg_edge_index[:, :n_v]
        data.test_neg_edge_index = neg_edge_index[:, n_v:n_v + n_t]
        data.train_neg_edge_index = neg_edge_index[:, n_v + n_t:]

    split_edge = {'train': {}, 'valid': {}, 'test': {}}
    split_edge['train']['edge'] = data.train_pos_edge_index.t()
    split_edge['train']['edge_neg'] = data.train_neg_edge_index.t()
    split_edge['valid']['edge'] = data.val_pos_edge_index.t()
    split_edge['valid']['edge_neg'] = data.val_neg_edge_index.t()
    split_edge['test']['edge'] = data.test_pos_edge_index.t()
    split_edge['test']['edge_neg'] = data.test_neg_edge_index.t()
    return split_edge