def print_statistics()

in utils.py [0:0]


    def print_statistics(self, run=None, f=sys.stdout):
        if run is not None:
            result = 100 * torch.tensor(self.results[run])
            argmax = result[:, 0].argmax().item()
            print(f'Run {run + 1:02d}:', file=f)
            print(f'Highest Valid: {result[:, 0].max():.2f}', file=f)
            print(f'Highest Eval Point: {argmax + 1}', file=f)
            print(f'   Final Test: {result[argmax, 1]:.2f}', file=f)
        else:
            result = 100 * torch.tensor(self.results)

            best_results = []
            for r in result:
                valid = r[:, 0].max().item()
                test = r[r[:, 0].argmax(), 1].item()
                best_results.append((valid, test))

            best_result = torch.tensor(best_results)

            print(f'All runs:', file=f)
            r = best_result[:, 0]
            print(f'Highest Valid: {r.mean():.2f} ± {r.std():.2f}', file=f)
            r = best_result[:, 1]
            print(f'   Final Test: {r.mean():.2f} ± {r.std():.2f}', file=f)