in sing/train.py [0:0]
def train_autoencoder(args, **kwargs):
checkpoint_path = args.checkpoint / "ae.torch" if args.checkpoint else None
model = ConvolutionalAE(
channels=args.ae_channels,
stride=args.ae_stride,
dimension=args.ae_dimension,
kernel_size=args.ae_kernel,
context_size=args.ae_context,
rewrite_layers=args.ae_rewrite,
window_name=args.ae_window,
squared_window=args.ae_squared_window)
advised_pad = model.decoder.strip + 512
if args.pad != advised_pad:
print("Warning, best padding for the current settings is {}, "
"current value is {}.".format(advised_pad, args.pad))
if args.ae_epochs:
print("Training autoencoder")
AutoencoderTrainer(
suffix="_ae",
model=model,
epochs=args.ae_epochs,
checkpoint_path=checkpoint_path,
**kwargs).train()
return model