in sing/ae/models.py [0:0]
def __init__(self,
channels=4096,
stride=256,
dimension=128,
kernel_size=1024,
context_size=9,
rewrite_layers=2,
window_name="hann",
squared_window=True):
super(ConvolutionalDecoder, self).__init__()
layers = []
layers.extend([
nn.Conv1d(
in_channels=dimension,
out_channels=channels,
kernel_size=context_size),
nn.ReLU()
])
for rewrite in range(rewrite_layers):
layers.extend([
nn.Conv1d(
in_channels=channels, out_channels=channels,
kernel_size=1),
nn.ReLU()
])
conv_tr = nn.ConvTranspose1d(
in_channels=channels,
out_channels=1,
kernel_size=kernel_size,
stride=stride,
padding=kernel_size - stride)
if window_name is not None:
conv_tr = WindowedConvTranpose1d(conv_tr, window_name,
squared_window)
layers.append(conv_tr)
self.layers = nn.Sequential(*layers)
self.context_size = context_size
self.stride = stride
self.kernel_size = kernel_size
self.strip = kernel_size - stride + (context_size - 1) * stride // 2