def __init__()

in sing/ae/models.py [0:0]


    def __init__(self,
                 channels=4096,
                 stride=256,
                 dimension=128,
                 kernel_size=1024,
                 context_size=9,
                 rewrite_layers=2,
                 window_name="hann",
                 squared_window=True):
        super(ConvolutionalDecoder, self).__init__()
        layers = []
        layers.extend([
            nn.Conv1d(
                in_channels=dimension,
                out_channels=channels,
                kernel_size=context_size),
            nn.ReLU()
        ])
        for rewrite in range(rewrite_layers):
            layers.extend([
                nn.Conv1d(
                    in_channels=channels, out_channels=channels,
                    kernel_size=1),
                nn.ReLU()
            ])

        conv_tr = nn.ConvTranspose1d(
            in_channels=channels,
            out_channels=1,
            kernel_size=kernel_size,
            stride=stride,
            padding=kernel_size - stride)
        if window_name is not None:
            conv_tr = WindowedConvTranpose1d(conv_tr, window_name,
                                             squared_window)
        layers.append(conv_tr)
        self.layers = nn.Sequential(*layers)
        self.context_size = context_size
        self.stride = stride
        self.kernel_size = kernel_size
        self.strip = kernel_size - stride + (context_size - 1) * stride // 2