def get_parameter_groups()

in beit_finetuning/optim_factory.py [0:0]


def get_parameter_groups(model, weight_decay=1e-5, skip_list=(), get_num_layer=None, get_layer_scale=None):
    parameter_group_names = {}
    parameter_group_vars = {}

    for name, param in model.named_parameters():
        if not param.requires_grad:
            continue  # frozen weights
        if len(param.shape) == 1 or name.endswith(".bias") or name in skip_list:
            group_name = "no_decay"
            this_weight_decay = 0.
        else:
            group_name = "decay"
            this_weight_decay = weight_decay
        if get_num_layer is not None:
            layer_id = get_num_layer(name)
            group_name = "layer_%d_%s" % (layer_id, group_name)
        else:
            layer_id = None

        if group_name not in parameter_group_names:
            if get_layer_scale is not None:
                scale = get_layer_scale(layer_id)
            else:
                scale = 1.

            parameter_group_names[group_name] = {
                "weight_decay": this_weight_decay,
                "params": [],
                "lr_scale": scale
            }
            parameter_group_vars[group_name] = {
                "weight_decay": this_weight_decay,
                "params": [],
                "lr_scale": scale
            }

        parameter_group_vars[group_name]["params"].append(param)
        parameter_group_names[group_name]["params"].append(name)
    print("Param groups = %s" % json.dumps(parameter_group_names, indent=2))
    return list(parameter_group_vars.values())