def create_optimizer()

in beit_finetuning/optim_factory.py [0:0]


def create_optimizer(args, model, get_num_layer=None, get_layer_scale=None, filter_bias_and_bn=True, skip_list=None):
    opt_lower = args.opt.lower()
    weight_decay = args.weight_decay
    if weight_decay and filter_bias_and_bn:
        skip = {}
        if skip_list is not None:
            skip = skip_list
        elif hasattr(model, 'no_weight_decay'):
            skip = model.no_weight_decay()
        parameters = get_parameter_groups(model, weight_decay, skip, get_num_layer, get_layer_scale)
        weight_decay = 0.
    else:
        parameters = model.parameters()

    if 'fused' in opt_lower:
        assert has_apex and torch.cuda.is_available(), 'APEX and CUDA required for fused optimizers'

    opt_args = dict(lr=args.lr, weight_decay=weight_decay)
    if hasattr(args, 'opt_eps') and args.opt_eps is not None:
        opt_args['eps'] = args.opt_eps
    if hasattr(args, 'opt_betas') and args.opt_betas is not None:
        opt_args['betas'] = args.opt_betas

    opt_split = opt_lower.split('_')
    opt_lower = opt_split[-1]
    if opt_lower == 'sgd' or opt_lower == 'nesterov':
        opt_args.pop('eps', None)
        optimizer = optim.SGD(parameters, momentum=args.momentum, nesterov=True, **opt_args)
    elif opt_lower == 'momentum':
        opt_args.pop('eps', None)
        optimizer = optim.SGD(parameters, momentum=args.momentum, nesterov=False, **opt_args)
    elif opt_lower == 'adam':
        optimizer = optim.Adam(parameters, **opt_args)
    elif opt_lower == 'adamw':
        optimizer = optim.AdamW(parameters, **opt_args)
    elif opt_lower == 'nadam':
        optimizer = Nadam(parameters, **opt_args)
    elif opt_lower == 'radam':
        optimizer = RAdam(parameters, **opt_args)
    elif opt_lower == 'adamp':
        optimizer = AdamP(parameters, wd_ratio=0.01, nesterov=True, **opt_args)
    elif opt_lower == 'sgdp':
        optimizer = SGDP(parameters, momentum=args.momentum, nesterov=True, **opt_args)
    elif opt_lower == 'adadelta':
        optimizer = optim.Adadelta(parameters, **opt_args)
    elif opt_lower == 'adafactor':
        if not args.lr:
            opt_args['lr'] = None
        optimizer = Adafactor(parameters, **opt_args)
    elif opt_lower == 'adahessian':
        optimizer = Adahessian(parameters, **opt_args)
    elif opt_lower == 'rmsprop':
        optimizer = optim.RMSprop(parameters, alpha=0.9, momentum=args.momentum, **opt_args)
    elif opt_lower == 'rmsproptf':
        optimizer = RMSpropTF(parameters, alpha=0.9, momentum=args.momentum, **opt_args)
    # elif opt_lower == 'novograd':
    #     optimizer = NovoGrad(parameters, **opt_args)
    elif opt_lower == 'nvnovograd':
        optimizer = NvNovoGrad(parameters, **opt_args)
    elif opt_lower == 'fusedsgd':
        opt_args.pop('eps', None)
        optimizer = FusedSGD(parameters, momentum=args.momentum, nesterov=True, **opt_args)
    elif opt_lower == 'fusedmomentum':
        opt_args.pop('eps', None)
        optimizer = FusedSGD(parameters, momentum=args.momentum, nesterov=False, **opt_args)
    elif opt_lower == 'fusedadam':
        optimizer = FusedAdam(parameters, adam_w_mode=False, **opt_args)
    elif opt_lower == 'fusedadamw':
        optimizer = FusedAdam(parameters, adam_w_mode=True, **opt_args)
    elif opt_lower == 'fusedlamb':
        optimizer = FusedLAMB(parameters, **opt_args)
    elif opt_lower == 'fusednovograd':
        opt_args.setdefault('betas', (0.95, 0.98))
        optimizer = FusedNovoGrad(parameters, **opt_args)
    else:
        assert False and "Invalid optimizer"
        raise ValueError

    if len(opt_split) > 1:
        if opt_split[0] == 'lookahead':
            optimizer = Lookahead(optimizer)

    return optimizer